深度学习中epoch、batch、step、iteration等神经网络参数是什么意思?

这篇具有很好参考价值的文章主要介绍了深度学习中epoch、batch、step、iteration等神经网络参数是什么意思?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

epoch:表示将训练数据集中的所有样本都过一遍(且仅过一遍)的训练过程。在一个epoch中,训练算法会按照设定的顺序将所有样本输入模型进行前向传播、计算损失、反向传播和参数更新。一个epoch通常包含多个step。

batch:一般翻译为“批次”,表示一次性输入模型的一组样本。在神经网络的训练过程中,训练数据往往是很多的,比如几万条甚至几十万条——如果我们一次性将这上万条的数据全部放入模型,对计算机性能、神经网络模型学习能力等的要求太高了;那么就可以将训练数据划分为多个batch,并随后分批将每个batch的样本一起输入到模型中进行前向传播、损失计算、反向传播和参数更新。但要注意,一般batch这个词用的不多,多数情况大家都是只关注batch size的。

batch size:一般翻译为“批次大小”,表示训练过程中一次输入模型的一组样本的具体样本数量。前面提到了,我们在神经网络训练过程中,往往需要将训练数据划分为多个batch;而具体每一个batch有多少个样本,那么就是batch size指定的了。

step:一般翻译为“步骤”,表示在一个epoch中模型进行一次参数更新的操作。通俗地说,在神经网络训练过程中,每次完成对一个batch数据的训练,就是完成了一个step。很多情况下,step和iteration表示的是同样的含义。

iteration:一般翻译为“迭代”,多数情况下就表示在训练过程中经过一个step的操作。一个iteration包括了一个step中前向传播、损失计算、反向传播和参数更新的流程。当然,在某些情况下,step和iteration可能会有细微的区别——有时候iteration是指完成一次前向传播和反向传播的过程,而step是指通过优化算法对模型参数进行一次更新的操作。但是绝大多数情况下,我们就认为二者是一样的即可。
训练模型的时候一般会以batch 的方式来训练,总共数据集会被分为n个batch,每训练一个batch 的话iter 累加一次文章来源地址https://www.toymoban.com/news/detail-694808.html

到了这里,关于深度学习中epoch、batch、step、iteration等神经网络参数是什么意思?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习中Epoch和Batch Size的关系

    在深度学习中,Epoch(周期)和 Batch Size(批大小)是训练神经网络时经常使用的两个重要的超参数。它们之间的关系是通过以下方式连接的: Epoch 表示整个训练数据集被神经网络完整地通过了一次。在一个 Epoch 内,神经网络会看到训练数据集中的所有样本一次,进行前向传

    2024年01月16日
    浏览(42)
  • 神经网络基础-神经网络补充概念-53-将batch norm拟合进神经网络

    梯度消失问题的缓解:在深度神经网络中,梯度消失是一个常见的问题,特别是在深层网络中。批归一化通过在每个批次内对输入进行标准化,使得激活函数的输入分布更稳定,从而减轻了梯度消失问题,使得梯度更容易传播,促进了训练过程的稳定性和效率。 加速收敛:由

    2024年02月12日
    浏览(30)
  • 深度神经网络基础——深度学习神经网络基础 & Tensorflow在深度学习的应用

    Tensorflow入门(1)——深度学习框架Tesnsflow入门 环境配置 认识Tensorflow 深度学习框架Tesnsflow 线程+队列+IO操作 文件读取案例 神经网络的种类: 基础神经网络:单层感知器,线性神经网络,BP神经网络,Hopfield神经网络等 进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经

    2024年02月16日
    浏览(44)
  • 竞赛 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月08日
    浏览(43)
  • 竞赛选题 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月07日
    浏览(46)
  • 【机器学习】——神经网络与深度学习

    目录 引入 一、神经网络及其主要算法 1、前馈神经网络 2、感知器 3、三层前馈网络(多层感知器MLP) 4、反向传播算法 二、深度学习 1、自编码算法AutorEncoder 2、自组织编码深度网络 ①栈式AutorEncoder自动编码器 ②Sparse Coding稀疏编码 3、卷积神经网络模型(续下次) 拓展:

    2024年02月10日
    浏览(49)
  • 【机器学习】——深度学习与神经网络

    目录 引入 一、神经网络及其主要算法 1、前馈神经网络 2、感知器 3、三层前馈网络(多层感知器MLP) 4、反向传播算法 二、深度学习 1、自编码算法AutorEncoder 2、自组织编码深度网络 ①栈式AutorEncoder自动编码器 ②Sparse Coding稀疏编码 3、卷积神经网络模型(续下次) 拓展:

    2024年02月09日
    浏览(43)
  • 计算机竞赛 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月07日
    浏览(55)
  • 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月04日
    浏览(52)
  • 深度学习神经网络

    神经网络算法是一种基于人工神经网络的机器学习算法。它的灵感来源于生物神经系统,能够通过学习大量数据来识别模式和关系,并进行分类、回归、聚类等任务。 神经网络算法通常由多个层次组成,每个层次包含多个神经元。这些神经元之间通过不同的权重相互连接,通

    2024年02月12日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包