【机器学习】人工智能概述(文末送书)

这篇具有很好参考价值的文章主要介绍了【机器学习】人工智能概述(文末送书)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

1.人工智能概述

1.1 机器学习、人工智能与深度学习

1.2 机器学习、深度学习能做些什么

2.什么是机器学习

2.1 定义

2.2 解释

2.3 数据集构成 

3.机器学习算法分类

4.机器学习开发流程 

5.学习框架

6.文末福利


 文章来源地址https://www.toymoban.com/news/detail-694942.html

1.人工智能概述

1.1 机器学习、人工智能与深度学习

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

机器学习和人工智能,深度学习的关系

 

  1. 人工智能(AI):人工智能是一门研究如何使计算机能够模拟、理解和执行人类智能任务的学科。它的目标是让计算机具备类似于人类的智能水平,可以进行推理、学习、感知和决策。

  2. 机器学习:机器学习是人工智能的一个重要分支,它是让计算机通过从数据中学习和提取模式,自动改进执行特定任务的能力。在传统编程中,程序员需要明确指定计算机应该如何执行任务,而在机器学习中,计算机通过学习数据的规律和特征自主地进行任务执行,这种方式使得计算机在面对新的情况时也能做出合理的决策。

  3. 深度学习:深度学习是机器学习的一种方法,它是通过构建和训练深层神经网络来实现学习和特征提取的过程。这些深层神经网络由多个神经元层组成,允许计算机通过层次化的方式提取和学习数据中的复杂特征。深度学习在图像识别、自然语言处理、语音识别等领域取得了显著的成就,并且在人工智能的快速发展中起到了重要的推动作用。

  • 机器学习是人工智能的一个实现途径

  • 深度学习是机器学习的一个方法发展而来

  • 深度学习是机器学习的一种技术手段,而机器学习是人工智能的一个重要组成部分。在实际应用中,深度学习带来了许多强大的AI模型和系统,使得计算机能够在复杂和大规模的数据中进行高效的学习和推理,从而实现了许多前所未有的人工智能应用。

达特茅斯会议-人工智能的起点

        1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy),马文·闵斯基(Marvin Minsky,人工智能与认知学专家),克劳德·香农(Claude Shannon,信息论的创始人),艾伦·纽厄尔(Allen Newell,计算机科学家),赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能。会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:人工智能。因此,1956年也就成为了人工智能元年。

1.2 机器学习、深度学习能做些什么

        机器学习的应用场景非常多,可以说渗透到了各个行业领域当中。医疗、航空、教育、物流、电商等等领域的各种场景。

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

  • 用在挖掘、预测领域:

    • 应用场景:店铺销量预测、量化投资、广告推荐、企业客户分类、SQL语句安全检测分类…

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

  • 用在图像领域:

    • 应用场景:街道交通标志检测、人脸识别等等

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

  • 用在自然语言处理领域:
    • 应用场景:文本分类、情感分析、自动聊天、文本检测等等

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

2.什么是机器学习

2.1 定义

        机器学习(Machine Learning)是一种人工智能(AI)的分支,它是通过计算机系统从数据中学习和改进执行特定任务的能力,而无需明确编程指令。换句话说,机器学习使得计算机可以通过数据的模式和规律,自动提取特征和知识,并在未来面对新的数据时做出合理的决策。

        传统的程序设计中,程序员需要编写明确的规则和算法,以指导计算机完成特定任务。但在机器学习中,我们提供给计算机的是一组训练数据,包含输入和对应的输出结果。计算机通过对这些数据进行学习,找到数据中的模式和规律,从而能够在未来的数据中进行预测或分类。

机器学习任务可以分为以下几类:

  1. 监督学习(Supervised Learning):在监督学习中,我们向计算机提供带有标签的训练数据,也就是输入数据和对应的正确输出。计算机通过学习这些数据来建立输入和输出之间的映射关系,从而能够预测未标记数据的输出。

  2. 无监督学习(Unsupervised Learning):在无监督学习中,我们向计算机提供没有标签的训练数据,计算机需要自主地发现数据中的结构和模式。无监督学习常用于聚类、降维和异常检测等任务。

  3. 强化学习(Reinforcement Learning):强化学习是一种通过尝试和错误来学习最佳决策策略的学习方法。在强化学习中,计算机代理根据环境的反馈(奖励或惩罚)不断调整策略,以最大化累积的奖励。

2.2 解释

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

  • 我们人从大量的日常经验中归纳规律,当面临新的问题的时候,就可以利用以往总结的规律去分析现实状况,采取最佳策略。
  • 从数据(大量的猫和狗的图片)中自动分析获得模型(辨别猫和狗的规律),从而使机器拥有识别猫和狗的能力。基于tensorflow深度学习的猫狗分类识别
  • 从数据(房屋的各种信息)中自动分析获得模型(判断房屋价格的规律),从而使机器拥有预测房屋价格的能力。基于随机森林模型对北京房价进行预测

从历史数据当中获得规律?这些历史数据是怎么的格式? 

2.3 数据集构成 

  • 结构:特征值+目标值

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

注:

  • 对于每一行数据我们可以称之为样本
  • 有些数据集可以没有目标值:

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

3.机器学习算法分类

  • 特征值:猫/狗的图片;目标值:猫/狗-类别
    • 分类问题
  • 特征值:房屋的各个属性信息;目标值:房屋价格-连续型数据
    • 回归问题
  • 特征值:人物的各个属性信息;目标值:无
    • 无监督学习

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

  • 监督学习(supervised learning)(预测)
    • 定义:输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。
    • 分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
    • 回归 线性回归、岭回归
  • 无监督学习(unsupervised learning)
    • 定义:输入数据是由输入特征值所组成。
    • 聚类 k-means

4.机器学习开发流程 

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

流程图:

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

5.学习框架

需明确几点问题:

(1)算法是核心,数据计算是基础

(2)找准定位

大部分复杂模型的算法设计都是算法工程师在做,而我们

  • 分析很多的数据
  • 分析具体的业务
  • 应用常见的算法
  • 特征工程、调参数、优化
  • 我们应该怎么做?

  • 学会分析问题,使用机器学习算法的目的,想要算法完成何种任务

  • 掌握算法基本思想,学会对问题用相应的算法解决
  • 学会利用库或者框架解决问题

当前重要的是掌握一些机器学习算法等技巧,从某个业务领域切入解决问题。

机器学习库与框架:

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

6.文末福利

《PySpark机器学习、自然语言处理与推荐系统》免费包邮送出3本!

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

内容简介:

       使用PySpark构建机器学习模型、自然语言处理应用程序以及推荐系统,从而应对各种业务挑战。该书首先介绍Spark的基础知识及其演进,然后讲解使用PySpark构建传统机器学习算法以及自然语言处理和推荐系统的全部知识点。
  《PySpark机器学习、自然语言处理与推荐系统》阐释如何构建有监督机器学习模型,比如线性回归、逻辑回归、决策树和随机森林,还介绍了无监督机器学习模型,比如K均值和层次聚类。该书重点介绍特征工程,以便使用PySpark创建有用的特征,从而训练机器学习模型。自然语言处理的相关章节将介绍文本处理、文本挖掘以及用于分类的嵌入。
  在阅读完该书后,读者将了解如何使用PySpark的机器学习库构建和训练各种机器学习模型。此外,还将熟练掌握相关的PySpark组件,比如数据获取、数据处理和数据分析,通过使用它们开发数据驱动的智能应用。

编辑推荐:

适读人群 :数据科学家、机器学习工程师

        使用PySpark构建机器学习模型、自然语言处理应用程序以及推荐系统,从而应对各种业务挑战。本书首先介绍Spark的基础知识,然后讲解使用PySpark构建传统机器学习算法以及自然语言处理和推荐系统的全部知识点。

        本书阐释了如何构建有监督机器学习模型,比如线性回归、逻辑回归、决策树和随机森林,还介绍了无监督机器学习模型,比如K均值和层次聚类。本书重点介绍特征工程,以便使用PySpark创建有用的特征,从而训练机器学习模型。自然语言处理的相关章节将介绍文本处理、文本挖掘以及用于分类的嵌入。

        在阅读完本书之后,读者将了解如何使用PySpark的机器学习库构建和训练各种机器学习模型。此外,还将熟练掌握相关的PySpark组件,从而进行数据获取、数据处理和数据分析,开发数据驱动的智能应用。

  • 抽奖方式:评论区随机抽取3位小伙伴免费送出!
  • 参与方式:关注博主、点赞、收藏、评论区评论“人生苦短,拒绝内卷!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!
  • 活动截止时间:2023-09-08 20:00:00
  • 购买链接:https://item.jd.com/12611069.html

 名单公布时间:2023-09-08 21:00:00   

【机器学习】人工智能概述(文末送书),机器学习,python,人工智能,机器学习

清华大学出版社9月“秋日阅读企划”活动开始啦,五折叠加无门槛优惠卷,点击即刻拥有!
领卷地址:
APP:https://pro.m.jd.com/mall/active/2Z3HoZGKy5i9aEpmoTUZnmcoAhHg/index.html
PC:https://pro.jd.com/mall/active/2Z3HoZGKy5i9aEpmoTUZnmcoAhHg/index.html

 

 

到了这里,关于【机器学习】人工智能概述(文末送书)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 一分钟秒懂人工智能对齐 ( 文末送书 )

    送书系列: 送书第一期:考研必备书单 送书第二期:CTF那些事儿 送书第三期:数据要素安全流通 送书第四期:MLOps工程实践:工具、技术与企业级应用 送书第五期:Python数据挖掘:入门进阶与实用案例分析 送书第六期:ChatGPT 驱动软件开发:AI 在软件研发全流程中的革新与

    2024年02月05日
    浏览(85)
  • 【文末送书】人工智能背景下的C++编程方向

    欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关注公粽号 《机器和智能》 回复 “python项目

    2024年02月05日
    浏览(44)
  • 机器学习--人工智能概述

    入门人工智能,了解人工智能是什么。为啥发展起来,用途是什么,是最重要也是最关键的事情。大致有以下思路。 人工智能发展历程 机器学习定义以及应用场景 监督学习,无监督学习 监督学习中的分类、回归特点 知道机器学习的开发流程 人工智能在现实生活中的应用

    2024年01月19日
    浏览(57)
  • 【机器学习】人工智能概述

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.人工智能概述 1.1 机器学习、人工智能与深度学习 1.2 机器学习、深度学习能做些什么

    2024年02月09日
    浏览(53)
  • 人工智能技术概述_3.机器学习

            广义上来说, 机器学习 指专门研究计算机怎么模拟或实现人类的学习行为以获取新的知识或技能的学科,使计算机重新组织已有的组织结构并不断改善自身的性能。更加精确地说,一个机器学习的程序就是可以从经验数据E中对任务T进行学习的算法,它在任务T的性

    2024年04月25日
    浏览(34)
  • 人工智能机器人技术概述

    移动机器人是一种能够在其环境中移动的自主或半自主机器人系统,通常是通过轮子或履带进行移动。这些机器人旨在在各种环境中执行各种任务,包括探索、监视、检查、运输和操作,包括室内和室外空间、危险区域甚至其他星球。 移动机器人配备传感器,例如摄像头,激

    2023年04月17日
    浏览(52)
  • 人工智能之深度学习常见应用方向你都了解吗?(文末包邮送书5本)

    从零带你了解深度学习常见的7大应用方向,包括:数字识别、图像识别、图像分类、目标检测、人脸识别、文本分类、聊天机器人。 🔥🔥本文已收录于专栏:《极客日报》,欢迎免费订阅 ​此专栏用于分享前沿技术、行业资讯、科技热点、工具测评、优质IT书籍和 抽奖包

    2024年02月03日
    浏览(53)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(84)
  • 人工智能|机器学习——基于机器学习的舌苔检测

    基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔质等舌象特征,了解人体内的体质信息从而对症下药。 传统中医的舌诊主要依赖

    2024年02月22日
    浏览(65)
  • 人工智能与机器学习

    欢迎关注博主 Mindtechnist 或加入【Linux C/C++/Python社区】一起探讨和分享Linux C/C++/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 专栏:《机器学习》 ​ ​ ☞什么是人工智能、机器学习、深度学习 人工智能这个概念诞生于1956年的达特茅斯

    2024年02月02日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包