商业数据分析概论

这篇具有很好参考价值的文章主要介绍了商业数据分析概论。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🐳 我正在和鲸社区参加“商业数据分析训练营活动” https://www.heywhale.com/home/competition/6487de6649463ee38dbaf58b ,以下是我的学习笔记:

学习主题:波士顿房价数据快速查看

日期:2023.9.4

关键概念/知识点:

  • 数据导入
  • 查看数据
  • 缺失值的处理
  • 统计特征描述

掌握的新函数/方法:

  • pandas.read_csv()
  • df.head()
  • df.tail()
  • df.iloc[ ]
  • df.loc[ ]
  • df.dropna (inplace=True)
  • df.describe()

代码举例

数据导入:

# 一切的工作都从引入 python 库包开始,import 是引入库包的语句,加一个 as 就可以把原先比较长的库包名改成简写
import pandas as pd
# 读取本地数据
# Pandas数据分析库中read_csv函数能够进行读取本地数据,我们将读取到的数据存储在名为 df(DataFrame)的变量中
df = pd.read_csv('/home/mw/input/data_analysis8875/Boston Housing Data.csv')

查看数据:

# Head of the data
# 现在我们将展示数据的前五行,以便快速查看数据结构和内容
# head()函数默认显示前五行,可以传入一个整数参数来指定显示的行数,例如df.head(10)将显示前十行。
print(df.head())

# Tail of the data
# 接着,我们展示数据的最后五行,以了解数据尾部的情况
# 与head()函数类似,tail()函数也是默认显示前五行,也可传入一个整数参数来指定显示的行数
print(df.tail())
# Python还提供了查看特定某行或某列数据的方法,可以用到iloc或者loc属性进行查看
# 如提取数据第一列的前五行
# iloc 用于基于整数索引的数据切片,逗号前的 ":" 代表选取所有行,而逗号后的 "0" 代表选取第一列
print(df.iloc[:,0].head())

# 提取从1120行前3列数据
print(df.iloc[10:20,0:3])

# 提取从1120行,CRIMRMAGE三列中数据
print(df.loc[10:20,['CRIM','RM','AGE']])

缺失值的处理:

查找并打印数据集中每列的缺失值数量

# isna() 函数检查每个元素是否为缺失值,sum() 函数将每列的缺失值数量加总
print(df.isna().sum())

若数据中包含缺失值,可使用如下方法进行处理:
删除缺失值:若缺失值不是很多,可以直接选择删除缺失值

df.dropna (inplace=True)

补充缺失值:若数据量不大,还要进行预测,建议选择数据填充

# 填充空值核心代码(将 A 列中缺失值填充为 B):
df.loc [df ['A'].isna (),'A'] = B

统计特征描述:

# 使用 describe() 函数生成数据集的描述性统计信息,如计数、均值、标准差、最小值、四分位数和最大值
# 输出行依次代表:数据量、平均值、标准差、最小值、下四分位点、中值、上四分位点、最大值
print(df.describe())

关键总结:

导入数据是进行数据分析的第一步,通常来说,数据一般是 csv 格式,在 Python 中,利用pd.read_csv()导入数据;
有数据之后,就要进行数据变换。通常会在这一步移除分析中的非必要数据,在移除之前首先需要查看一下已有数据,包括查看数据的前几行、后几行以及选择特定列的数据;
通过df.isna().sum()查找缺失值数量,并按照实际需要对缺失值进行删除或填充;
python 中通过 describe 属性对数据的统计特征进行描述,获取数据集的描述性统计信息,例如平均值、标准差、最小值、最大值和四分位数。
… …

问题/困惑:

只是先对于数据的加载有了初步的了解,对于后续数据分析的流程尚不清楚

下一步计划:

通过练习掌握pandas数据导入、查看数据、数据描述

参考资料/相关资源链接:

Pandas文档:https://pandas.pydata.org/docs/文章来源地址https://www.toymoban.com/news/detail-694965.html

到了这里,关于商业数据分析概论的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据分析技能点-数据挖掘及入门

    在数字化的世界里,数据像是一种新的货币。它不仅推动了科技创新,还在塑造着我们的生活、工作和思维方式。但数据本身并不是目的,真正的价值在于如何从海量的数据中提炼有用的信息和知识。这正是数据挖掘发挥作用的地方。 数据挖掘是从大量的、不完整的、噪声的

    2024年02月07日
    浏览(51)
  • Python数据分析与数据挖掘:解析数据的力量

    随着大数据时代的到来,数据分析和数据挖掘已经成为许多行业中不可或缺的一部分。在这个信息爆炸的时代,如何从大量的数据中提取有价值的信息,成为了企业和个人追求的目标。而Python作为一种强大的编程语言,提供了丰富的库和工具,使得数据分析和数据挖掘变得更

    2024年02月11日
    浏览(60)
  • [数据挖掘] 数据分析的八种方法

    不 同类型的数据分析包括描述性、诊断性、探索性、推理性、预测性、因果性、机械性和规范性。以下是您需要了解的有关每个的信息。本文对于前人归纳的8种进行叙述。

    2024年02月13日
    浏览(58)
  • 数据挖掘(6)聚类分析

    无指导的,数据集中类别未知 类的特征: 类不是事先给定的,而是根据数据的 相似性、距离 划分的 聚类的数目和结构都没有事先假定。 挖掘有价值的客户: 找到客户的黄金客户 ATM的安装位置 原则: 组内数据有较高相似度、不同组数据不相似 相似性的度量(统计学角度): Q型

    2024年02月07日
    浏览(55)
  • 【数据挖掘与人工智能可视化分析】可视化分析:如何通过可视化技术进行数据挖掘和发现

    作者:禅与计算机程序设计艺术 数据挖掘(Data Mining)和人工智能(Artificial Intelligence,AI)已经成为当今社会热点话题。这两者之间的结合也带来了很多挑战。作为数据科学家、机器学习工程师、深度学习研究员等,掌握了数据的获取、清洗、处理、建模、应用这些技术的前提下,

    2024年02月07日
    浏览(78)
  • 【数据挖掘】使用 Python 分析公共数据【01/10】

            本文讨论了如何使用 Python 使用 Pandas 库分析官方 COVID-19 病例数据。您将看到如何从实际数据集中收集见解,发现乍一看可能不那么明显的信息。特别是,本文中提供的示例说明了如何获取有关疾病在不同国家/地区传播速度的信息。         要继续操作,您需

    2024年02月12日
    浏览(49)
  • 数据挖掘与数据分析之统计知识篇

    统计学上, 自由度 是指当以样本的 统计量 估计 总体 的参数时, 样本中独立或能自由变化的数据个数叫自由度 。一般来说,自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N

    2024年02月11日
    浏览(52)
  • AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一

    ⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者: 秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们 点赞👍🏻、收藏

    2024年02月07日
    浏览(47)
  • Python数据分析-数据挖掘(准备数据——数据建模——模型评估——模型应用)

    20 理解业务和数据:我们需要做好什么计划?_哔哩哔哩_bilibili 目录   一、理解业务和数据:我们需要做好什么计划? 1.1两个思想问题 1.2为什么数据挖掘不是万能的 1.3业务背景与目标 1.4把握数据  1.5总结 二、 准备数据:如何处理出完整、干净的数据? 2.1找到数据 2.2数据探索

    2024年02月05日
    浏览(66)
  • 【Python】数据分析+数据挖掘——探索Pandas中的数据筛选

    当涉及数据处理和分析时,Pandas是Python编程语言中最强大、灵活且广泛使用的工具之一。Pandas提供了丰富的功能和方法,使得数据的选择、筛选和处理变得简单而高效。在本博客中,我们将重点介绍Pandas中数据筛选的关键知识点,包括条件索引、逻辑操作符、 query() 方法以及

    2024年02月15日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包