第六章,线性变换,1-线性变换、表示矩阵、线性算子

这篇具有很好参考价值的文章主要介绍了第六章,线性变换,1-线性变换、表示矩阵、线性算子。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


玩转线性代数(32)线性变换的相关概念的笔记,相关证明以及例子见原文

线性变换

一个将向量空间V映射到向量空间W的映射L,如果对所有的 v 1 , v 2 ∈ V v_1,v_2\in V v1,v2V及所有的标量 α \alpha α β \beta β,有 L ( α v 1 + β v 2 ) = α L ( v 1 ) + β L ( v 2 ) L(\alpha v_1+\beta v_2)=\alpha L(v_1)+\beta L(v_2) L(αv1+βv2)=αL(v1)+βL(v2)
则称L为V到W上的一个线性变换,记为 L : V → W L:V\rightarrow W L:VW
判断方法:若L为V到W上的一个线性变换,等价于:
L ( v 1 + v 2 ) = L ( v 1 ) + L ( v 2 ) ; L ( λ v 1 ) = λ L ( v 1 ) L(v_1+v_2)=L(v_1)+L(v_2); L(\lambda v_1) = \lambda L(v_1) L(v1+v2)=L(v1)+L(v2);L(λv1)=λL(v1)

表示矩阵

对任一矩阵 A m ∗ n A_{m*n} Amn,可以定义一个由 R n R^n Rn R m R^m Rm的线性变换 L A L_A LA,称A为 L A L_A LA的表示矩阵。而每一线性变换均可由矩阵来定义,如果是 R n R^n Rn上的线性算子,则其对应矩阵为n阶方阵。

线性算子

如果V与W相同,称 L : V → V L:V\rightarrow V L:VV为V上的一个线性算子,是一个向量空间到其自身的线性变换。

R 2 R^2 R2中特殊的线性变换

示意图见原文

旋转变换算子

A = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) A=\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} A=(cosθsinθsinθcosθ)
绕逆时针旋转 θ \theta θ

反射变换算子

B 1 = ( 1 0 0 − 1 ) B_1=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} B1=(1001)
x轴对称
B 2 = ( − 1 0 0 1 ) B_2=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} B2=(1001)
y轴对称

投影变换算子

C 1 = ( 1 0 0 0 ) C_1=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} C1=(1000)
只取了x坐标,所以是投影到x轴
C 2 = ( 0 0 0 1 ) C_2=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} C2=(0001)
只取了y坐标,所以是投影到y轴

伸压变换算子

D 1 = ( t 0 0 1 ) D_1=\begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} D1=(t001)
x坐标缩放t倍,y不变
D 2 = ( 0 0 0 t ) D_2=\begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix} D2=(000t)
x坐标不变,y缩放t倍

剪切变换算子

E 1 = ( 1 0 k 1 ) E_1=\begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} E1=(1k01)
x不变,将x坐标的k倍加到y上,离y轴越远(x绝对值越大)形变越大(垂直变换)
E 2 = ( 1 k 0 1 ) E_2=\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} E2=(10k1)
y不变,将y坐标的k倍加到x上,离x轴越远(y绝对值越大)形变越大(水平变换)文章来源地址https://www.toymoban.com/news/detail-695162.html

到了这里,关于第六章,线性变换,1-线性变换、表示矩阵、线性算子的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数(应用篇):第五章:特征值与特征向量、第六章:二次型

    1.定义 设 A A A 是 n n n 阶方阵, λ λ λ 是一个数,若存在 n n n 维非零列向量 ξ ξ ξ ,使得 A ξ = λ ξ ( ξ ≠ 0 ) Aξ=λξ quad (ξ≠0) A ξ = λ ξ ( ξ  = 0 ) 则称 λ λ λ 是 A A A 的特征值, ξ ξ ξ 是 A A A 的对应于(属于)特征值 λ λ λ 的特征向量。 注: ①只有方阵才有特征值和特征

    2024年02月14日
    浏览(36)
  • 【考研数学】线性代数第六章 —— 二次型(2,基本定理及二次型标准化方法)

    了解了关于二次型的基本概念以及梳理了矩阵三大关系后,我们继续往后学习二次型的内容。 定理 1 —— (标准型定理)任何二次型 X T A X pmb{X}^Tpmb{AX} X T A X 总可以经过可逆的线性变换 X = P Y pmb{X=PY} X = P Y ,即 P pmb{P} P 为可逆矩阵,把二次型 f ( X ) f(pmb{X}) f ( X ) 化为标准

    2024年02月07日
    浏览(30)
  • 高等代数(七)-线性变换03:线性变换的矩阵

    § 3 § 3 §3 线性变换的矩阵 设 V V V 是数域 P P P 上 n n n 维线性空间, ε 1 , ε 2 , ⋯   , ε n varepsilon_{1}, varepsilon_{2}, cdots, varepsilon_{n} ε 1 ​ , ε 2 ​ , ⋯ , ε n ​ 是 V V V 的一组基, 现在我们来建立线性变换与矩阵的关系. 空间 V V V 中任一向量 ξ xi ξ 可以经 ε 1 , ε 2 , ⋯  

    2024年02月20日
    浏览(38)
  • 线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第二篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与复合线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性

    2024年02月02日
    浏览(39)
  • 线性代数 --- LU分解(Gauss消元法的矩阵表示)

                     首先, LU分解实际上就是用矩阵的形式来记录的高斯消元的过程 。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵upper triangle的首字母的大写。         高斯消元的每一步都

    2024年02月02日
    浏览(42)
  • 线性代数|证明:线性变换在两个基下的矩阵相似

    前置定义 1(基变换公式、过渡矩阵) 设 α 1 , ⋯   , α n boldsymbol{alpha}_1,cdots,boldsymbol{alpha}_n α 1 ​ , ⋯ , α n ​ 及 β 1 , ⋯   , β n boldsymbol{beta}_1,cdots,boldsymbol{beta}_n β 1 ​ , ⋯ , β n ​ 是线性空间 V n V_n V n ​ 中的两个基, { β 1 = p 11 α 1 + p 21 α 2 + ⋯ + p n 1 α n β 2

    2024年02月03日
    浏览(36)
  • 线性代数的学习和整理6:如何表示向量/矩阵? 矩阵就是向量组,矩阵的本质是什么?

    目录 0 参考的知识点和目录 1 向量 1.1 向量的概念 1.2 向量如何表示 1.3 向量/矩阵的优秀表示方法:即向量空间内的有向线段 2 矩阵 2.1 矩阵就是多个列向量的集合/合并( 而不是 +),矩阵就是多个列向量的一种简化书写方式? 2.2 矩阵的加法  =等价于=  向量的加法 2.3 矩阵

    2024年02月07日
    浏览(38)
  • 矩阵理论复习部分——线性代数(3)初等变换、逆矩阵

    一、初等变换3种方式 对调矩阵的两行(两列); 以 k ≠ 0 k not = 0 k  = 0 乘某一行(列)所有元素; 某一行(列)元素 k k k 倍加到另一行(列); 二、初等矩阵 初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。 左乘初等矩阵 = 行变换 右乘初等矩阵 = 列变换 初等矩

    2024年02月04日
    浏览(47)
  • MIT线性代数笔记-第31讲-线性变换及对应矩阵

    线性变换相当于是矩阵的抽象表示,每个线性变换都对应着一个矩阵 例: 考虑一个变换 T T T ,使得平面上的一个向量投影为平面上的另一个向量,即 T : R 2 → R 2 T:R^2 to R^2 T : R 2 → R 2 ,如图: ​   图中有两个任意向量 v ⃗ , w ⃗ vec{v} , vec{w} v , w 和一条直线,作 v ⃗

    2024年02月03日
    浏览(41)
  • 线性代数-初等行变换与初等行矩阵

    初等行变换 :在矩阵的行上进行 倍加 、 倍乘 、 对换 变换 初等行矩阵 :在单位矩阵上应用初等行变换得到的矩阵 初等行矩阵 乘上矩阵 ,就相当于在矩阵 上实施了对应的初等行变换。 ** ** 倍加 :将第二行乘2加在第三行上,r3’ = 2 * r2 + r3. 所用的初等行矩阵 为: ,即单

    2024年02月11日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包