使用词袋模型(BoW)测试提取图像的特征点和聚类中心

这篇具有很好参考价值的文章主要介绍了使用词袋模型(BoW)测试提取图像的特征点和聚类中心。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


环境配置

(1) 导入opencv,参考链接

https://blog.csdn.net/Aer_7z/article/details/132612369

(2) 安装numpy
激活虚拟环境的前提下,输入:

pip install numpy

(3) 安装sklearn
激活虚拟环境的前提下,输入:

pip install scikit-learn

代码测试

在pycharm端运行下列代码(在同一目录下放置一张名为image.jpg的图片)。

import cv2
import numpy as np
from sklearn.cluster import KMeans

# 加载图像
image = cv2.imread("image.jpg", 0)  # 使用灰度模式加载图像

# 创建 SIFT 特征提取器对象
sift = cv2.SIFT_create()

# 检测关键点和计算特征描述符
keypoints, descriptors = sift.detectAndCompute(image, None)

# 将特征描述符存储在 features 变量中
features = np.array(descriptors)



# 假设你已经提取了局部特征并将其存储在 features 变量中,features 是一个 N × D 的矩阵,
# 其中 N 是特征数量,D 是每个特征的维度

# 聚类算法的参数设置
num_clusters = 100  # 聚类簇的数量

# 创建聚类算法对象
kmeans = KMeans(n_clusters=num_clusters)

# 执行聚类算法
kmeans.fit(features)

# 获取每个局部特征的聚类标签
labels = kmeans.labels_

# 获取聚类中心
centroids = kmeans.cluster_centers_

# 输出每个特征的聚类标签和聚类中心
for i in range(len(features)):
    print("特征", i, "的聚类标签:", labels[i])

print("\n聚类中心:")
for i in range(num_clusters):
    print("聚类", i, "的中心:", centroids[i])

至此,结束文章来源地址https://www.toymoban.com/news/detail-695165.html

到了这里,关于使用词袋模型(BoW)测试提取图像的特征点和聚类中心的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器视觉(八):图像特征提取

    目录: 机器视觉(一):概述 机器视觉(二):机器视觉硬件技术 机器视觉(三):摄像机标定技术 机器视觉(四):空域图像增强 机器视觉(五):机器视觉与世界杯 机器视觉(六):频域图像增强 机器视觉(七):图像分割 机器视觉(八):图像特征提取 机器视觉

    2024年02月09日
    浏览(68)
  • Opencv图像特征点提取(

            目录 特征点分类 1 ORB ①特征点检测 ②计算特征描述 2 SIFT 1 SIFT特征检测的步骤 ①.在DOG尺度空间中获取极值点,即关键点。 ②.特征点方向估计 ③生成特征描述 ④.代码实现 3.SURF ①.SURF的介绍 ②.SURF算法步骤 ③. SIFT与SURF效果比较 ④代码实现 4 FAST角点检测且阈值可

    2024年02月14日
    浏览(49)
  • 机器学习图像特征提取—颜色(RGB、HSV、Lab)特征提取并绘制直方图

    目录 1 颜色特征 1.1 RGB色彩空间 1.2 HSV色彩空间 1.3 Lab色彩空间 2 使用opencv-python对图像颜色特征提取并绘制直方图 2.1 RGB颜色特征和直方图 2.2 HSV颜色特征和直方图 2.3 Lab颜色特征和直方图 RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以

    2024年02月08日
    浏览(60)
  • OpenCV图像特征提取学习五,HOG特征检测算法

    一、HOG向梯度直方图概述   向梯度直方图(Histogram of Oriented Gradient, HOG)特征是基于对稠密网格中归一化的局部方向梯度直方图的计算。此方法的基本观点是:局部目标的外表和形状可以被局部梯度或边缘方向的分布很好的描述,即使我们不知道对应的梯度和边缘的位置。在

    2024年02月04日
    浏览(48)
  • 计算机视觉之图像特征提取

    图像特征提取是计算机视觉中的重要任务,它有助于识别、分类、检测和跟踪对象。以下是一些常用的图像特征提取算法及其简介: 颜色直方图(Color Histogram) : 简介 :颜色直方图表示图像中各种颜色的分布情况。通过将图像中的像素分成颜色通道(如RGB)并计算每个通道

    2024年02月12日
    浏览(41)
  • C++ 图像线特征提取【HoughLinesP算法】

       HoughLinesP :是一种基于Hough变换的直线检测算法。它可以识别图像中的直线,并返回它们的端点坐标。其函数接口如下: cv::HoughLinesP(   InputArray src,   // 输入图像,必须 8-bit 的灰度图像   OutputArray lines,  // 输出的极坐标来表示直线   double rho,    // 生成极

    2024年02月07日
    浏览(41)
  • Lesson4-1:OpenCV图像特征提取与描述---角点特征

    学习目标 理解图像的特征 知道图像的角点 1 图像的特征 大多数人都玩过拼图游戏。首先拿到完整图像的碎片,然后把这些碎片以正确的方式排列起来从而重建这幅图像。如果把拼图游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了。 在拼图时,我们要寻找一些唯一

    2024年02月10日
    浏览(39)
  • 【图像处理】SIFT角点特征提取原理

            提起在OpenCV中的特征点提取,可以列出Harris,可以使用SIFT算法或SURF算法来检测图像中的角特征点。本篇围绕sift的特征点提取,只是管中窥豹,而更多的特征点算法有: Harris Stephens / Shi–Tomasi 角点检测算法 Förstner角点检测器; 多尺度 Harris 算子 水平曲线曲率法

    2024年02月07日
    浏览(43)
  • 计算机图像处理—HOG 特征提取算法

    1. 实验内容 本实验将学习HOG 特征提取算法。 2. 实验要点 HOG 算法 HOG 算法有效的原因 创建 HOG 描述符 HOG 描述符中的元素数量 可视化 HOG 描述符 理解直方图 3. 实验环境 Python 3.6.6 numpy matplotlib cv2 copy 简介 正如在 ORB 算法中看到的,我们可以使用图像中的关键点进行匹配,以检

    2024年02月09日
    浏览(55)
  • 学习笔记:Opencv实现图像特征提取算法SIFT

    2023.8.19 为了在暑假内实现深度学习的进阶学习,特意学习一下传统算法,分享学习心得,记录学习日常 SIFT的百科: SIFT = Scale Invariant Feature Transform, 尺度不变特征转换 全网最详细SIFT算法原理实现_ssift算法_Tc.小浩的博客-CSDN博客 在环境配置中要配置opencv: pip install opencv-c

    2024年02月12日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包