【数据结构】 优先级队列(堆)与堆的建立

这篇具有很好参考价值的文章主要介绍了【数据结构】 优先级队列(堆)与堆的建立。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🍀优先级队列

【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java

🐱‍👤优先级队列的概念

前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适。

比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。

在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。

🌳堆的由来

为了模拟实现优先级队列的模拟实现,JDK1.8中的PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整。

🐱‍🐉堆的概念

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大
堆)。
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆

🐱‍👓堆的性质

  • 堆中某个节点的值总是不大于或不小于其父节点的值;

  • 堆总是一棵完全二叉树。

【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java

🐱‍🏍堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储

【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java
注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低

将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2

  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子

  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子

🌲堆的创建

🐱‍👤堆向下调整

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?
【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。

向下过程(以小堆为例):

  1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
  2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在

parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标
将parent与较小的孩子child比较,如果

  • parent小于较小的孩子child,调整结束
  • 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整
    即parent = child;child = parent*2+1; 然后继续2。

【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java
大堆实现与其类似

🐱‍🐉代码实现

public class MyHeap {
    public void shiftDown(int[] array, int parent) {
        // child先标记parent的左孩子,因为parent可能右左没有右
        int child = 2*parent + 1;
        int size = array.length;
        while(child < size ) {
            // 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
            if(child + 1 < size) {
                if(array[child + 1] < array[child]) {
                    child = child + 1;
                }
            }
            // 如果最小的孩子比其父亲还小,说明该结构没有满足堆的特性,进行交换
            if(array[child] < array[parent]) {
                int tmp = array[parent];
                array[parent] = array[child];
                array[child] = tmp;
            } else {
                //满足就退出循环
                break;
            }
            // parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
            parent = child;
            child = 2*parent + 1;
        }
    }
}

📌代码测试结果展示

测试代码

public class TestMain {
    public static void main(String[] args) {
        MyHeap myHeap = new MyHeap();
        int[] array = {27,15,19,18,28,34,65,49,25,37};
        System.out.println("调整前:");
        for(int i = 0; i < array.length ; i++) {
            System.out.print(array[i] + " ");
        }
        for(int parent = (array.length-2)/2 ; parent >= 0; parent --) {
            myHeap.shiftDown(array, parent);
        }
        System.out.println();
        System.out.println("调整后:");
        for(int i = 0; i < array.length ; i++) {
            System.out.print(array[i] + " ");
        }
        System.out.println();
    }
}

测试结果
【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。

时间复杂度分析:

最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为
【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java

🌴建堆的时间复杂度

对于普通的序列{ 1,5,3,8,7,6 },我们需要建立大堆,即根节点的左右子树不满足堆的特性,又该如何调整呢?
【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java
做法如下:

找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整

for(int parent = (array.length-2)/2 ; parent >= 0; parent --) {
	myHeap.bigDown(array, parent);
}

那么时间复杂度又为多少呢?

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

【数据结构】 优先级队列(堆)与堆的建立,数据结构,数据结构,优先级队列,堆,java
因此:建堆的时间复杂度为O(N)

⭕总结

关于《【数据结构】 优先级队列(堆)与堆的建立》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!文章来源地址https://www.toymoban.com/news/detail-695170.html

到了这里,关于【数据结构】 优先级队列(堆)与堆的建立的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法-优先级队列

    Gitee上开源的数据结构与算法代码库:数据结构与算法Gitee代码库 优先级队列,按照优先级别依次输出 计算机科学中,堆是一种基于树的数据结构,通常用 完全二叉树 实现。堆的特性如下 在大顶堆中,任意节点 C 与它的父节点 P 符合 P . v a l u e ≥ C . v a l u e P.value geq C.val

    2024年02月13日
    浏览(45)
  • 数据结构 之 优先级队列(堆) (PriorityQueue)

    🎉欢迎大家观看AUGENSTERN_dc的文章(o゜▽゜)o☆✨✨ 🎉感谢各位读者在百忙之中抽出时间来垂阅我的文章,我会尽我所能向的大家分享我的知识和经验📖 🎉希望我们在一篇篇的文章中能够共同进步!!! 🌈个人主页:AUGENSTERN_dc 🔥个人专栏:C语言 | Java | 数据结构 ⭐个人

    2024年03月20日
    浏览(49)
  • 数据结构之优先级队列【堆】(Heap)

    目录 1. 优先级队列(Priority Queue) 2.堆的概念 3.堆的存储方式 4.堆的创建 5.用堆模拟实现优先级队列  6.PriorityQueue常用接口介绍 6.1 PriorityQueue的特点 6.2 PriorityQueue几种常见的构造方式 7.top-k问题 8.堆排序 本篇主要内容总结 (1)优先级队列底层是堆来实现的 (2)堆的本质是

    2024年02月01日
    浏览(56)
  • 数据结构 - 6(优先级队列(堆)13000字详解)

    堆分为两种:大堆和小堆。它们之间的区别在于元素在堆中的排列顺序和访问方式。 大堆(Max Heap): 在大堆中,父节点的值比它的子节点的值要大。也就是说,堆的根节点是堆中最大的元素。大堆被用于实现优先级队列,其中根节点的元素始终是队列中最大的元素。 大堆

    2024年02月08日
    浏览(40)
  • 【一起学习数据结构与算法】优先级队列(堆)

    如果我们给每个元素都分配一个数字来标记其优先级,不妨设较小的数字具有较高的优先级,这样我们就可以在一个集合中访问优先级最高的元素并对其进行查找和删除操作了。这样,我们就引入了 优先级队列 这种数据结构。 优先级队列(priority queue) 是0个或多个元素的集

    2024年01月19日
    浏览(42)
  • 【数据结构与算法】03 队列(顺序队列--循环队列--优先级队列--链队列)

    队列( queue )是一种常见的数据结构,它遵循先进先出(FIFO)的原则。队列可以理解为一个具有两个端点的线性数据结构,其中一个端点称为\\\"队尾\\\"(rear),用于插入新元素,另一个端点称为\\\"队首\\\"(front),用于移除元素。新元素被插入到队尾,而最早插入的元素总是在队

    2024年02月08日
    浏览(55)
  • Java 数据结构篇-用数组、堆实现优先级队列

    🔥博客主页: 【 小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍    文章目录         1.0 优先级队列说明         2.0 用数组实现优先级队列         3.0 无序数组实现优先级队列         3.1 无序数组实现优先级队列 - 入队列 offer(E value)         3.2 无序数组实现优先

    2024年02月04日
    浏览(46)
  • 【数据结构初阶】——第八节.优先级队列(小根堆的模拟实现)

     作者简介:大家好,我是未央; 博客首页: 未央.303 系列专栏:Java初阶数据结构 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!! 目录 文章目录 前言 引言 一、堆的概念 二、堆的性质  三、堆的操作 3.1 向下调整算法 3.2 小根堆的创建 3.3 向上调整

    2024年02月07日
    浏览(51)
  • 经典TopK问题、优先级队列 与 堆的纠葛一文为你解惑——数据结构

    前言: 本篇文章以 TopK 问题为引,具体阐述了 PriorityQueue 实现的基本逻辑——堆 数据结构,以及PriorityQueue 的常用方法。如有问题欢迎看官朋友指正,如果觉得文章还不错的话,求点赞、收藏、评论 三连。 重点: 堆的基本实现逻辑 PriorityQueue 运用和源码分析 TopK 问题的解法

    2023年04月22日
    浏览(46)
  • 【堆的认识及其优先级队列】java代码实现,保姆级教程学习堆和优先级队列

    前言: 大家好,我是 良辰 丫💞💞⛽,我们又见面了,前面我们讲了用链表实现的二叉树,今天我们来接触 堆 的概念,堆是一种特殊的二叉树,只不过咱们的对底层原理是数组,堆也是我们在做题中经常见到的,那么,接下来我们就慢慢的去接触堆, 认识堆,理解堆,掌

    2024年02月02日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包