【深度学习】实验07 使用TensorFlow完成逻辑回归

这篇具有很好参考价值的文章主要介绍了【深度学习】实验07 使用TensorFlow完成逻辑回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

使用TensorFlow完成逻辑回归

TensorFlow是一种开源的机器学习框架,由Google Brain团队于2015年开发。它被广泛应用于图像和语音识别、自然语言处理、推荐系统等领域。

TensorFlow的核心是用于计算的数据流图。在数据流图中,节点表示数学操作,边表示张量(多维数组)。将操作和数据组合在一起的数据流图可以使 TensorFlow 对复杂的数学模型进行优化,同时支持分布式计算。

TensorFlow提供了Python,C++,Java,Go等多种编程语言的接口,让开发者可以更便捷地使用TensorFlow构建和训练深度学习模型。此外,TensorFlow还具有丰富的工具和库,包括TensorBoard可视化工具、TensorFlow Serving用于生产环境的模型服务、Keras高层封装API等。

TensorFlow已经发展出了许多优秀的模型,如卷积神经网络、循环神经网络、生成对抗网络等。这些模型已经在许多领域取得了优秀的成果,如图像识别、语音识别、自然语言处理等。

除了开源的TensorFlow,Google还推出了基于TensorFlow的云端机器学习平台Google Cloud ML,为用户提供了更便捷的训练和部署机器学习模型的服务。

解决分类问题里最普遍的baseline model就是逻辑回归,简单同时可解释性好,使得它大受欢迎,我们来用tensorflow完成这个模型的搭建。

1. 环境设定

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import warnings
warnings.filterwarnings("ignore")

import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time

2. 数据读取

#使用tensorflow自带的工具加载MNIST手写数字集合
mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 
Extracting ./data/mnist/train-images-idx3-ubyte.gz
Extracting ./data/mnist/train-labels-idx1-ubyte.gz
Extracting ./data/mnist/t10k-images-idx3-ubyte.gz
Extracting ./data/mnist/t10k-labels-idx1-ubyte.gz
#查看一下数据维度
mnist.train.images.shape
(55000, 784)
#查看target维度
mnist.train.labels.shape
(55000, 10)

3. 准备好placeholder

batch_size = 128
X = tf.placeholder(tf.float32, [batch_size, 784], name='X_placeholder') 
Y = tf.placeholder(tf.int32, [batch_size, 10], name='Y_placeholder')

4. 准备好参数/权重

w = tf.Variable(tf.random_normal(shape=[784, 10], stddev=0.01), name='weights')
b = tf.Variable(tf.zeros([1, 10]), name="bias")
logits = tf.matmul(X, w) + b 

5. 计算多分类softmax的loss function

# 求交叉熵损失
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
# 求平均
loss = tf.reduce_mean(entropy)

6. 准备好optimizer

这里的最优化用的是随机梯度下降,我们可以选择AdamOptimizer这样的优化器文章来源地址https://www.toymoban.com/news/detail-695275.html

learning_rate = 0.01
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

7. 在session里执行graph里定义的运算

#迭代总轮次
n_epochs = 30

with tf.Session() as sess:
    # 在Tensorboard里可以看到图的结构
    writer = tf.summary.FileWriter('../graphs/logistic_reg', sess.graph)

    start_time = time.time()
    sess.run(tf.global_variables_initializer())	
    n_batches = int(mnist.train.num_examples/batch_size)
    for i in range(n_epochs): # 迭代这么多轮
        total_loss = 0
        for _ in range(n_batches):
            X_batch, Y_batch = mnist.train.next_batch(batch_size)
            _, loss_batch = sess.run([optimizer, loss], feed_dict={X: X_batch, Y:Y_batch}) 
            total_loss += loss_batch
        print('Average loss epoch {0}: {1}'.format(i, total_loss/n_batches))
    print('Total time: {0} seconds'.format(time.time() - start_time))
    print('Optimization Finished!')

# 测试模型
    preds = tf.nn.softmax(logits)
    correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
    
    n_batches = int(mnist.test.num_examples/batch_size)
    total_correct_preds = 0
    
    for i in range(n_batches):
        X_batch, Y_batch = mnist.test.next_batch(batch_size)
        accuracy_batch = sess.run([accuracy], feed_dict={X: X_batch, Y:Y_batch}) 
        total_correct_preds += accuracy_batch[0]
        
    print('Accuracy {0}'.format(total_correct_preds/mnist.test.num_examples))

    writer.close()
   Average loss epoch 0: 0.36748782022571785    
   Average loss epoch 1: 0.2978815356126198    
   Average loss epoch 2: 0.27840628396797845    
   Average loss epoch 3: 0.2783186247437706    
   Average loss epoch 4: 0.2783641471138923    
   Average loss epoch 5: 0.2750668214473413           
   Average loss epoch 6: 0.2687560408126502    
   Average loss epoch 7: 0.2713795114126239    
   Average loss epoch 8: 0.2657588795522154    
   Average loss epoch 9: 0.26322007090686916    
   Average loss epoch 10: 0.26289192279735646    
   Average loss epoch 11: 0.26248606019989873       
   Average loss epoch 12: 0.2604622903056356    
   Average loss epoch 13: 0.26015280702939403    
   Average loss epoch 14: 0.2581879366319496    
   Average loss epoch 15: 0.2590309207117085    
   Average loss epoch 16: 0.2630510463581219    
   Average loss epoch 17: 0.25501730025578767    
   Average loss epoch 18: 0.2547102673000945    
   Average loss epoch 19: 0.258298404375851    
   Average loss epoch 20: 0.2549241428330784    
   Average loss epoch 21: 0.2546788509283866    
   Average loss epoch 22: 0.259556887067837    
   Average loss epoch 23: 0.25428259843365575    
   Average loss epoch 24: 0.25442713139565676    
   Average loss epoch 25: 0.2553852511383159    
   Average loss epoch 26: 0.2503043229415978    
   Average loss epoch 27: 0.25468004046828596    
   Average loss epoch 28: 0.2552785321479633    
   Average loss epoch 29: 0.2506257003663859    
   Total time: 28.603315353393555 seconds    
   Optimization Finished!    
   Accuracy 0.9187

附:系列文章

序号 文章目录 直达链接
1 波士顿房价预测 https://want595.blog.csdn.net/article/details/132181950
2 鸢尾花数据集分析 https://want595.blog.csdn.net/article/details/132182057
3 特征处理 https://want595.blog.csdn.net/article/details/132182165
4 交叉验证 https://want595.blog.csdn.net/article/details/132182238
5 构造神经网络示例 https://want595.blog.csdn.net/article/details/132182341
6 使用TensorFlow完成线性回归 https://want595.blog.csdn.net/article/details/132182417
7 使用TensorFlow完成逻辑回归 https://want595.blog.csdn.net/article/details/132182496
8 TensorBoard案例 https://want595.blog.csdn.net/article/details/132182584
9 使用Keras完成线性回归 https://want595.blog.csdn.net/article/details/132182723
10 使用Keras完成逻辑回归 https://want595.blog.csdn.net/article/details/132182795
11 使用Keras预训练模型完成猫狗识别 https://want595.blog.csdn.net/article/details/132243928
12 使用PyTorch训练模型 https://want595.blog.csdn.net/article/details/132243989
13 使用Dropout抑制过拟合 https://want595.blog.csdn.net/article/details/132244111
14 使用CNN完成MNIST手写体识别(TensorFlow) https://want595.blog.csdn.net/article/details/132244499
15 使用CNN完成MNIST手写体识别(Keras) https://want595.blog.csdn.net/article/details/132244552
16 使用CNN完成MNIST手写体识别(PyTorch) https://want595.blog.csdn.net/article/details/132244641
17 使用GAN生成手写数字样本 https://want595.blog.csdn.net/article/details/132244764
18 自然语言处理 https://want595.blog.csdn.net/article/details/132276591

到了这里,关于【深度学习】实验07 使用TensorFlow完成逻辑回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用 TensorFlow 执行逻辑回归

    创建一个包含用于定义逻辑回归的 Python 代码的 Jupyter Notebook,然后使用 TensorFlow (tf.keras) 实现它 在本教程中,了解如何创建包含用于定义逻辑回归的 Python 代码的 Jupyter Notebook,然后使用 TensorFlow (tf.keras) 实现它。Notebook 在 IBM Cloud Pak® for Data as a Service on IBM Cloud® 上运行

    2024年01月18日
    浏览(31)
  • 深度学习 -- 逻辑回归 PyTorch实现逻辑回归

    线性回归解决的是回归问题,而逻辑回归解决的是分类问题,这两种问题的区别是前者的目标属性是连续的数值类型,而后者的目标属性是离散的标称类型。 可以将逻辑回归视为神经网络的一个神经元,因此学习逻辑回归能帮助理解神经网络的工作原理。 逻辑回归是一种 广

    2024年02月06日
    浏览(30)
  • 深度学习(一),线性回归与逻辑回归

            代码是自己敲得,图是自己画的,连公式都是一个一个字打的, 希望赞是你给的(≧◡≦)。         线性回归(Liner Regression),俗称lr。                                                                         一个大家熟悉得不能再熟悉的式子,便是线性回归

    2024年03月25日
    浏览(31)
  • 【Python机器学习】实验03 逻辑回归

    在这一次练习中,我们将要实现逻辑回归并且应用到一个分类任务。我们还将通过将正则化加入训练算法,来提高算法的鲁棒性,并用更复杂的情形来测试它。 本实验的数据包含两个变量(评分1和评分2,可以看作是特征),某大学的管理者,想通过申请学生两次测试的评分,来

    2024年02月11日
    浏览(34)
  • 深度学习之用PyTorch实现逻辑回归

    0.1 学习视频源于:b站:刘二大人《PyTorch深度学习实践》 0.2 本章内容为自主学习总结内容,若有错误欢迎指正! 代码(类比线性回归): BCEloss:   结果: 注:输出结果为类别是1的概率。

    2024年02月13日
    浏览(37)
  • pytorch深度学习逻辑回归 logistic regression

    结果  

    2024年02月16日
    浏览(47)
  • 【Python机器学习】实验04 多分类实践(基于逻辑回归)

    Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Se

    2024年02月11日
    浏览(35)
  • 【深度学习每日小知识】Logistic Loss 逻辑回归

    线性回归的损失函数是平方损失。逻辑回归的损失函数是对数损失,定义如下: L o g L o s s = ∑ ( x , y ) ∈ D − y log ⁡ ( y ′ ) − ( 1 − y ) log ⁡ ( 1 − y ′ ) LogLoss=sum_{(x,y)in D}-ylog(y\\\')-(1-y)log(1-y\\\') L o gL oss = ( x , y ) ∈ D ∑ ​ − y lo g ( y ′ ) − ( 1 − y ) lo g ( 1 − y ′ ) 其中:

    2024年02月02日
    浏览(41)
  • 【Python机器学习】实验04(1) 多分类(基于逻辑回归)实践

    Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Se

    2024年02月14日
    浏览(32)
  • 【深度学习】TensorFlow实现线性回归,代码演示。全md文档笔记(代码文档已分享)

    本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经

    2024年02月21日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包