高精度乘法模板(fft)

这篇具有很好参考价值的文章主要介绍了高精度乘法模板(fft)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 正常高精度复杂度是o(n^2),fft复杂度o(nlogn)文章来源地址https://www.toymoban.com/news/detail-695291.html

#define int long long//__int128 2^127-1(GCC)
#define PII pair<int,int>
#define f first
#define s second
using namespace std;
const int inf = 0x3f3f3f3f3f3f3f3f, N = 3e5 + 5, mod = 1e9 + 7;
const double PI = acos(-1);
int n, m;
struct Complex
{
    double x, y;
    Complex operator+ (const Complex& t) const
    {
        return { x + t.x, y + t.y };
    }
    Complex operator- (const Complex& t) const
    {
        return { x - t.x, y - t.y };
    }
    Complex operator* (const Complex& t) const
    {
        return { x * t.x - y * t.y, x * t.y + y * t.x };
    }
}a[N], b[N];

int rev[N], bit, tot;
void fft(Complex a[], int inv)
{
    for (int i = 0; i < tot; i++)
        if (i < rev[i])
            swap(a[i], a[rev[i]]);
    for (int mid = 1; mid < tot; mid <<= 1)
    {
        auto w1 = Complex({ cos(PI / mid), inv * sin(PI / mid) });
        for (int i = 0; i < tot; i += mid * 2)
        {
            auto wk = Complex({ 1, 0 });
            for (int j = 0; j < mid; j++, wk = wk * w1)
            {
                auto x = a[i + j], y = wk * a[i + j + mid];
                a[i + j] = x + y, a[i + j + mid] = x - y;
            }
        }
    }
}
signed main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    string aa, bb;
    cin >> aa >> bb;
    n = aa.size()-1, m = bb.size()-1;
    for (int i = 0; i <= n; i++) { a[i].x = aa[i] - '0'; }
    for (int i = 0; i <= m; i++) { b[i].x = bb[i] - '0'; }
    while ((1 << bit) < n + m + 1) bit++;
    tot = 1 << bit;
    for (int i = 0; i < tot; i++) {
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
    }
    fft(a, 1), fft(b, 1);
    for (int i = 0; i < tot; i++) a[i] = a[i] * b[i];
    fft(a, -1);
    string s;
    int t=0;
    for (int i = n+m; i >= 0; i--) {
        t+=(int)(a[i].x / tot + 0.5);
        s+=t%10+'0';
        t/=10;
    }
    if(t) s+=t+'0';
    reverse(s.begin(),s.end());
    cout<<s;
}

到了这里,关于高精度乘法模板(fft)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 高精度加法,减法,乘法,除法(上)(C语言)

    前言 本篇内容介绍加法和减法,如果想看乘法和除法就点这里-高精度乘法,除法 加,减,乘,除这些运算我们自然信手捏来,就拿加法来说,我们要用c语言编程算a+b的和,只需让sum = a+b即可,可是这是局限的,我们都知道int的表示的最大值为2147483647(32位和64位机器)。但

    2024年02月03日
    浏览(40)
  • (基础算法)高精度加法,高精度减法

    什么叫做高精度加法呢?包括接下来的高精度减法,高精度乘法与除法都是同一个道理。正常来讲的话加减乘除,四则运算的数字都是整数,也就是需要在int的范围之内,但当这个操作数变得非常\\\"大\\\"的时候( 其实就是一个字符串,比方说有一个数是20位,如果用整数视角来

    2024年02月01日
    浏览(55)
  • 算法笔记——高精度算法(附源码)

    📖作者介绍:22级树莓人(计算机专业),热爱编程<目前在c++阶段, 因为最近参加新星计划算法赛道(白佬),所以加快了脚步,果然急迫感会增加动力 ——目标Windows,MySQL,Qt,数据结构与算法,Linux,多线程,会持续分享学习成果和小项目的 📖作者主页:热爱编程的

    2023年04月08日
    浏览(61)
  • 【算法】模拟,高精度

      P1601 A+B Problem(高精) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路就是模拟,值得注意的就是要用字符串类型输入。存进自己的int数组时要倒着存,因为如果是正着存的话,进位会有点trouble。 时间复杂度O(max(m,n))    P1303 A*B Problem - 洛谷 | 计算机科学教育新生态 (lu

    2024年02月09日
    浏览(49)
  • 高精度算法详解

    首先要知道为什么需要高精度算法: 高精度算法是 处理大数字 的数学计算方法,当数字过大不能用 int 和 long long 存储时,我们就可以 使用string和vector类型 来存储他们的每一位,然后进行计算。 我们可以先把要输入的两个数字放到vector中存储,注意要 反着存(后边做加法

    2024年01月17日
    浏览(56)
  • 高精度算法笔记·····························

    加法 减法 乘法 除法 高精度加法的步骤: 1.高精度数字利用字符串读入 2.把字符串 翻转 存入两个整型数组A、B 3.从低位到高位,逐位求和,进位,存余 4.把数组C从高位到低位依次输出         1.2为准备         3为加法具体实现(0按位取反为-1,即-1时结束等价于=0)  

    2024年01月21日
    浏览(55)
  • C++高精度算法

    目录 前言:  思路: 高精度加法: 高精度减法: 高精度乘法: 高精度除法:  代码: 一、高精度加法 二、高精度减法  三、高精度乘法  四、高精度除法 最后         计算机最初、也是最重要的应用就是数值运算。在编程进行数值运算时,有时会遇到运算的精度要求特

    2024年02月14日
    浏览(48)
  • C++基础算法高精度篇

    📟作者主页:慢热的陕西人 🌴专栏链接:C++算法 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 主要讲解了高精度算法的四种常用的计算 以下数字均指位数 ①A + B(精度均在10^6) ②A - B (精度均在10^6) ③A * b (len(A) = 10^6, a = 1000); ④A / b (len(A) = 10^6, a = 1000); Ⅲ. Ⅰ . A

    2024年02月16日
    浏览(35)
  • C++ 算法 高精度(较详细.)

            在我们进行计算的过程中,经常会遇到 几十位,甚至几百位的数字 的计算问题,也有可能会遇到小数点后几十位,几百位的情况,而我们面对这样的情况下,   和 的数据范围显然是 不够使用 的了。因此这时,我们就需要引入一个新的算法,叫做 高精度算法

    2023年04月10日
    浏览(36)
  • 基于matlab的高精度信号峰值检测算法

    目录 1.算法描述 2.仿真效果预览 3.MATLAB核心程序 4.完整MATLAB        峰值检验是示波表中数据采集方式之一, 这种技术起源于存储深度不能满足捕获毛刺的需要。如果用模拟示波器去观察, 只有当毛刺信号是重复性的并且和主信号同步时, 才能看到毛刺信号 。由于毛刺源于其

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包