论文阅读_扩散模型_DM

这篇具有很好参考价值的文章主要介绍了论文阅读_扩散模型_DM。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

英文名称: Deep Unsupervised Learning using Nonequilibrium Thermodynamics
中文名称: 使用非平衡热力学原理的深度无监督学习
论文地址: http://arxiv.org/abs/1503.03585
代码地址: https://github.com/Sohl-Dickstein/Diffusion-Probabilistic-Models
时间: 2015-11-18
作者: Jascha Sohl-Dickstein, 斯坦福大学
引用量: 1813

读后感

论文目标是建立灵活且易用数据生成模型。它利用非平衡统计物理学原理:通过扩散过程(少量加噪)系统地、缓慢地破坏数据分布中的结构;然后,学习反向扩散过程,恢复数据结构。

介绍

扩散模型与变分模型

扩散模型与变分模型原理类似,都是将图片拆成一系列高斯分布的均值和方差,而扩散模型是一个逐步变化的过程,主要差别如下:

  • 原理不同:扩散模型使用物理学、准静态过程和退火采样的思想。由于任何平滑目标分布都存在扩散过程,因此理论上该方法可以捕获任意形式的数据分布。
  • 展示了用简单的乘法,将一个分布逐步转换为另一分布的过程。
  • 解决了推理模型和生成模型之间目标的不对称性,将正向(推理)过程限制为简单的函数形式,反向(生成)过程将具有相同的函数形式。
  • 可训练具有数**千层(时间步)**的模型。
  • 精细控制每层中熵产生的上限和下限。

方法

论文阅读_扩散模型_DM,论文阅读,论文阅读

请记住图中这些符号,很多后续文章都延用了这些符号的定义。

向前轨迹

其中蓝色是扩散过程,从左往右看,总共T步,每步加一点高斯噪声,将瑞士卷图扩散成了高斯分布,扩展过程设为q。每步都根据上一步数据而来:
q ( x ( 0 ⋯ T ) ) = q ( x ( 0 ) ) ∏ t = 1 T q ( x ( t ) ∣ x ( t − 1 ) ) q\left(\mathbf{x}^{(0 \cdots T)}\right)=q\left(\mathbf{x}^{(0)}\right) \prod_{t=1}^{T} q\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right) q(x(0T))=q(x(0))t=1Tq(x(t)x(t1))

反向轨迹

中间红色部分是扩散的逆过程,从右往左看,图片逐步恢复,恢复过程设为p;在训练过程中,通过学习高斯扩散的逆过程,使数据转换回原分布,从而生成数据。
p ( x ( 0 ⋯ T ) ) = p ( x ( T ) ) ∏ t = 1 T p ( x ( t − 1 ) ∣ x ( t ) ) p\left(\mathbf{x}^{(0 \cdots T)}\right)=p\left(\mathbf{x}^{(T)}\right) \prod_{t=1}^{T} p\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right) p(x(0T))=p(x(T))t=1Tp(x(t1)x(t))
最后一行展示了反向扩散过程的漂移项。fμ (x(t), t) 是高斯逆马尔可夫转移的均值和协方差的函数。

扩散的原理是通过马尔可夫链逐渐将一种分布转换为另一种分布。最终,估计概率分布的任务简化为对高斯序列的均值和协方差函数的回归任务(这里的0状态指的是原始图,T状态指高斯分布图);由于扩散链中的每个步骤都具有可分析评估的概率(对比正向和反向变化中每一步数据的相似度),因此也可以对整个链进行分析评估。

模型概率

计算将图像恢复成原图的概率,可拆解成每一步变化的累积。
p ( x ( 0 ) ) = ∫ d x ( 1 ⋯ T ) p ( x ( 0 ⋯ T ) ) q ( x ( 1 ⋯ T ) ∣ x ( 0 ) ) q ( x ( 1 ⋯ T ) ∣ x ( 0 ) ) = ∫ d x ( 1 ⋯ T ) q ( x ( 1 ⋯ T ) ∣ x ( 0 ) ) p ( x ( 0 ⋯ T ) ) q ( x ( 1 ⋯ T ) ∣ x ( 0 ) ) = ∫ d x ( 1 ⋯ T ) q ( x ( 1 ⋯ T ) ∣ x ( 0 ) ) p ( x ( T ) ) ∏ t = 1 T p ( x ( t − 1 ) ∣ x ( t ) ) q ( x ( t ) ∣ x ( t − 1 ) ) \begin{aligned} p\left(\mathbf{x}^{(0)}\right)= & \int d \mathbf{x}^{(1 \cdots T)} p\left(\mathbf{x}^{(0 \cdots T)}\right) \frac{q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right)}{q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right)} \\ = & \int d \mathbf{x}^{(1 \cdots T)} q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0 \cdots T)}\right)}{q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right)} \\ = & \int d \mathbf{x}^{(1 \cdots T)} q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right) \\ & p\left(\mathbf{x}^{(T)}\right) \prod_{t=1}^{T} \frac{p\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right)}{q\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right)} \end{aligned} p(x(0))===dx(1T)p(x(0T))q(x(1T)x(0))q(x(1T)x(0))dx(1T)q(x(1T)x(0))q(x(1T)x(0))p(x(0T))dx(1T)q(x(1T)x(0))p(x(T))t=1Tq(x(t)x(t1))p(x(t1)x(t))

训练

具体方法是计算熵 H 和 KL 散度。其推导与变分贝叶斯方法中对数似然界限的推导类似。DK散度描述了每一时间步数据分布的差异,熵描述了数据的混乱程度。
L ≥ K K = − ∑ t = 2 T ∫ d x ( 0 ) d x ( t ) q ( x ( 0 ) , x ( t ) ) . D K L ( q ( x ( t − 1 ) ∣ x ( t ) , x ( 0 ) ) ∥ p ( x ( t − 1 ) ∣ x ( t ) ) ) + H q ( X ( T ) ∣ X ( 0 ) ) − H q ( X ( 1 ) ∣ X ( 0 ) ) − H p ( X ( T ) ) . \begin{aligned} L & \geq K \\ K= & -\sum_{t=2}^{T} \int d \mathbf{x}^{(0)} d \mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) . \\ & D_{K L}\left(q\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \| p\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right)\right) \\ & +H_{q}\left(\mathbf{X}^{(T)} \mid \mathbf{X}^{(0)}\right)-H_{q}\left(\mathbf{X}^{(1)} \mid \mathbf{X}^{(0)}\right)-H_{p}\left(\mathbf{X}^{(T)}\right) . \end{aligned} LK=Kt=2Tdx(0)dx(t)q(x(0),x(t)).DKL(q(x(t1)x(t),x(0))p(x(t1)x(t)))+Hq(X(T)X(0))Hq(X(1)X(0))Hp(X(T)).
设置扩散率 βt
热力学中,在平衡分布之间移动时所采取的时间表决定了损失多少自由能。简单地说,就是如何设置每一步变化的大小。一般情况下,第一步β设成一个很小的常数,以防过拟合,然后2-T步逐步扩大。将在之后的DDPM中详述。

乘以分布计算后验

对大多数模型而言,乘以分布计算量大,而在扩散模型中则比较简单,第二个分布可以被视为扩散过程中每个步骤的小扰动。文章来源地址https://www.toymoban.com/news/detail-695437.html

到了这里,关于论文阅读_扩散模型_DM的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CVPR2023最新论文 (含语义分割、扩散模型、多模态、预训练、MAE等方向)

    2023 年 2 月 28 日凌晨,CVPR 2023 顶会论文接收结果出炉! CVPR 2023 收录的工作中 \\\" 扩散模型、多模态、预训练、MAE \\\" 相关工作的数量会显著增长。 Delivering Arbitrary-Modal Semantic Segmentation 论文/Paper: http://arxiv.org/pdf/2303.01480 代码/Code: None Conflict-Based Cross-View Consistency for Semi-Supervised

    2023年04月08日
    浏览(45)
  • [论文精读] 使用扩散模型生成真实感视频 - 【李飞飞团队新作,文生视频 新基准】

    论文导读: 论文背景:2023年12月11日,AI科学家李飞飞团队与谷歌合作,推出了视频生成模型W.A.L.T(Window Attention Latent Transformer)——一个在共享潜在空间中训练图像和视频生成的、基于Transformer架构的扩散模型。李飞飞是华裔女科学家、世界顶尖的AI专家,现为美国国家工程院

    2024年02月03日
    浏览(48)
  • NeurIPS上新 | 从扩散模型、脑电表征,到AI for Science,微软亚洲研究院精选论文

    编者按:欢迎阅读“科研上新”栏目!“科研上新”汇聚了微软亚洲研究院最新的创新成果与科研动态。在这里,你可以快速浏览研究院的亮点资讯,保持对前沿领域的敏锐嗅觉,同时也能找到先进实用的开源工具。 本期“科研上新”将为大家带来多篇微软亚洲研究院在 N

    2024年02月03日
    浏览(43)
  • High-Resolution Image Synthesis with Latent Diffusion Models 稳定扩散模型论文笔记

    一、研究现状        早期图像生成方法主要是变分自动编码器(Variational Autoencoders, VAEs),该算法利用编码器和解码器以及变分推断的方法学习隐空间到真实图像空间的映射从而完成图像的生成。其优势是特征空间可迁移并且训练较为稳定,但是不容易进行模型评估,当输入

    2024年02月20日
    浏览(42)
  • DALL·E 2(内含扩散模型介绍)【论文精读】Hierarchical Text-ConditionalImage Generation with CLIP Latents

            大家好,今天我们就一起来看一下两个月之前 OpenAI 刚放出来的一篇力作。DALL·E 2是 OpenAI 一系列文本图像生成工作的最新一篇。去年 1 月份他们先推出了Dolly,然后在年底的时候又推出了glide。然后现在 4 月份刚推出了 DALL·E 2 一出来其实网友就已经炸开了锅。我

    2024年04月27日
    浏览(39)
  • 【每日论文阅读】生成模型篇

    联邦多视图合成用于元宇宙 标题: Federated Multi-View Synthesizing for Metaverse 作者: Yiyu Guo; Zhijin Qin; Xiaoming Tao; Geoffrey Ye Li 摘要: 元宇宙有望提供沉浸式娱乐、教育和商务应用。然而,虚拟现实(VR)在无线网络上的传输是数据和计算密集型的,这使得引入满足严格的服务质量要求的

    2024年02月02日
    浏览(43)
  • 【计算机视觉 | 扩散模型】新论文 | DragGAN论文:如果甲方想把大象 P 转身,你只需要拖动 GAN 就好了

    2023年5月18日提交的论文,华人一作。 论文地址: 项目地址: 代码地址为: 具体代码将会在六月开源! 在图像生成领域,以 Stable Diffusion 为代表的扩散模型已然成为当前占据主导地位的范式。但扩散模型依赖于迭代推理,这是一把双刃剑,因为迭代方法可以实现具有简单目

    2024年02月05日
    浏览(45)
  • 【模型压缩】 LPPN论文阅读笔记

    LPPN: A Lightweight Network for Fast Phase Picking  深度学习模型的问题在于计算复杂度较高,在实际数据处理中需要面临较高的处理代价,且需要专用的加速处理设备,如GPU。随着数据累积,迫切需要设计一种能够保证精度的轻量化高速震相拾取模型,以提高处理海量数据的效率,这

    2024年02月16日
    浏览(39)
  • 论文阅读_增强语言模型综述

    name_en: Augmented Language Models: a Survey name_ch: 增强语言模型综述 paper_addr: http://arxiv.org/abs/2302.07842 date_read: 2023-05-20 date_publish: 2023-02-15 tags: [‘深度学习’,‘自然语言处理’,‘大模型’] author: Grégoire Mialon,Meta 文章是一篇增强语言模型(Augmented Language Models,ALMs)综述,这里的增

    2024年02月15日
    浏览(56)
  • 【论文阅读笔记】Mamba模型代码理解

    官方实现:state-spaces/mamba (github.com) 最简化实现:johnma2006/mamba-minimal: Simple, minimal implementation of the Mamba SSM in one file of PyTorch. (github.com) 直接实现:alxndrTL/mamba.py: A simple and efficient Mamba implementation in PyTorch and MLX. (github.com) 官方代码做了大量优化,目录层级较多,对于理解模型含

    2024年04月13日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包