数学建模:拟合算法

这篇具有很好参考价值的文章主要介绍了数学建模:拟合算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:拟合算法

拟合算法

根据1到12点间的温度数据求出温度与时间之间的近似函数关系 F ( t ) F(t) F(t),由 F ( t ) F(t) F(t) 推断 t =13.5 时的温度。这种根据离散数据求数据间近似函数关系的问题称为曲线拟合问题

拟合问题与插值问题的区别在于:

  • 插值函数过已知点,而拟合函数不一定过已知点.
  • 插值主要用于求函数值,而拟合的主要目的是求函数关系,从而进行预测等进一步的分析。

多项式拟合

[p,S] = polyfit(x,y,n);

x和y是被拟合数据的自变量和因变量;n为拟合多项式的次数;a为拟合多项式系数构成的向量;S为 分 析 拟 合 效 果 所需的指标(可省略)。

%% 多项式拟合,使用cftool工具箱
clc;clear;
x=0:0.1:1;
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66   9.56 9.48 9.30 11.2];
%%
[p,~] = polyfit(x,y,2);
xp = 0:0.1:1;
yp = polyval(p,xp);
plot(x,y,'.k',xp,yp,'r');

数学建模:拟合算法,数学建模,MATLAB,数学建模,算法


非线性拟合

clc;clear;
% 指定函数拟合步骤
% (1) 输入待拟合数据x,y
%(2)指定函数关系式
syms t;
x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15];
y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.09;0.032;-0.015;-0.02];%指定函数形式为f(t)=acos(kt)e^(wt),进行拟合
f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'});
cfun=fit(x,y,f)     %显示拟合函数
xi=0:.1:20;
yi=cfun(xi);
plot(x,y,'r*',xi,yi,'b-');

数学建模:拟合算法,数学建模,MATLAB,数学建模,算法


cftool工具箱的使用


26 老哥带你学数模—拟合算法原理及案例分析(P47-P74).pdf文章来源地址https://www.toymoban.com/news/detail-695488.html

到了这里,关于数学建模:拟合算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模:拟合算法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 根据1到12点间的温度数据求出温度与时间之间的近似函数关系 F ( t ) F(t) F ( t ) ,由 F ( t ) F(t) F ( t ) 推断 t =13.5 时的温度。这种根据离散数据求数据间近似函数关系的问题称为 曲线拟合问题 。 拟合问题与插值问题的区别在于

    2024年02月10日
    浏览(35)
  • 【数学建模】——拟合算法

    拟合算法定义:与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)。 插值和拟合的区别: 例子: 此例子中如果用插值算法,因

    2024年02月16日
    浏览(37)
  • 数学建模-MATLAB神经网络工具箱实现数据拟合预测

    将数据集保存在矩阵data中 在APP页面找到Neural Net Fitting 3.输入与目标均为 data,Samples are 选择 Matrix rows 4.训练集和验证集的百分比可以自定义,一般默认 三种算法,各有优劣,一般默认第一个,点击Train进行训练 4.点击Performance 5.以此图为例,13.1572代表误差,误差越低越好,可

    2024年02月06日
    浏览(44)
  • 【数学建模】清风数模中正课4 拟合算法

    在插值算法中,我们得到的曲线一定是要经过所有的函数点的;而用拟合所得到的曲线则不一样, 拟合问题中,不需要得到的曲线一定经过给定的点 。 拟合的目的是寻求一个函数曲线,使得该曲线在某种准则下与所有的数据点最为接近,也就是曲线拟合地最好。 为了确定拟

    2024年02月11日
    浏览(36)
  • 【数学建模】matlab正态拟合直方图 | 获取一组数据的统计特征(平均值,方差等)

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 首先给出一组数据样例: 1.1.1 平均值(期望) 获得结果: 1.1.2 中值 1.1.3 方差和标准差 A.方差 B.标准差(一般也是正态分布里面的西格玛) 1.1.4 排序 依然用之前的数据画图 从数据分布上来看大概就是个正

    2024年02月04日
    浏览(53)
  • 数学建模-插值算法(Matlab)

    注意:代码文件仅供参考,一定不要直接用于自己的数模论文中 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭 如何修改代码避免查重的方法:https://www.bilibili.com/video/av59423231   //清风数学建模 简单来说是根据已知点进行线性数据预测,但数据太少需要通过数学方

    2023年04月26日
    浏览(58)
  • 【数学建模】 MATLAB 蚁群算法

    MATLAB–基于蚁群算法的机器人最短路径规划 * https://blog.csdn.net/woai210shiyanshi/article/details/104712540?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168853912916800215023827%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257Drequest_id=168853912916800215023827biz_id=0utm_medium=distribute.pc_search_result.

    2024年02月15日
    浏览(49)
  • 【数学建模】《实战数学建模:例题与讲解》第十四讲-模拟退火、遗传算法(含Matlab代码)

    本系列侧重于例题实战与讲解,希望能够在例题中理解相应技巧。文章开头相关基础知识只是进行简单回顾,读者可以搭配课本或其他博客了解相应章节,然后进入本文正文例题实战,效果更佳。 如果这篇文章对你有帮助,欢迎点赞与收藏~ 现代优化算法,自20世纪80年代初开

    2024年02月04日
    浏览(55)
  • Matlab数学建模算法之模拟退火算法(SA)详解

    🔗 运行环境:Matlab 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥  推荐专栏:《算法研究》 🔐####  防伪水印——左手の明天 #### 🔐 💗 大家好🤗🤗🤗,我是 左手の明天 !好久不见💗 💗今天分享 matlab数学建模算法 —— 模拟退火算法 💗

    2024年01月16日
    浏览(47)
  • 数学建模算法汇总(全网最全,含matlab案例代码)

      全国大学生数学建模竞赛中,常见的算法模型有以下30种: 最小二乘法 数值分析方法 图论算法 线性规划 整数规划 动态规划 贪心算法 分支定界法 蒙特卡洛方法 随机游走算法 遗传算法 粒子群算法 神经网络算法 人工智能算法 模糊数学 时间序列分析 马尔可夫链 决策树 支

    2024年02月08日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包