elasticsearch的搜索补全提示

这篇具有很好参考价值的文章主要介绍了elasticsearch的搜索补全提示。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项

拼音分词器

下载 

要实现根据字母做补全,就必须对文档按照拼音分词,GitHub上有拼音分词插件

GitHub - medcl/elasticsearch-analysis-pinyin: This Pinyin Analysis plugin is used to do conversion between Chinese characters and Pinyin.

elasticsearch的搜索补全提示,elasticsearch,elasticsearch,大数据,搜索引擎

解压

解压到一个文件夹中去elasticsearch的搜索补全提示,elasticsearch,elasticsearch,大数据,搜索引擎

上传 

上传到服务器中,elasticsearch的plugin目录  

elasticsearch的搜索补全提示,elasticsearch,elasticsearch,大数据,搜索引擎

重启 

重启elasticsearch  

docker restart es

 测试

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}

返回拼音 

elasticsearch的搜索补全提示,elasticsearch,elasticsearch,大数据,搜索引擎

自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符

  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart

  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

elasticsearch的搜索补全提示,elasticsearch,elasticsearch,大数据,搜索引擎

自定义分词器 

PUT /myanalyzer
{
  "settings": {
    "analysis": {
      "analyzer": { 
      "my_analyzer": { 
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { 
        "py": { 
        "type": "pinyin", 
		  "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
      "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}
  • analyzer自定义分词器 
  • my_analyzer分词器名称
  • filter自定义tokenizer filter
  • py过滤器名称
  • filter.type过滤器类型,这里是pinyin
  • name分词的字段

 测试

POST /myanalyzer/_analyze
{
  "text": ["华美达酒店还不错"],
  "analyzer": "my_analyzer"
}

结果

elasticsearch的搜索补全提示,elasticsearch,elasticsearch,大数据,搜索引擎

自动补全查询 

创建索引库

PUT /hotel
{
  "settings": {
    "analysis": {
      "analyzer": {
        "text_anlyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        },
        "completion_analyzer": {
          "tokenizer": "keyword",
          "filter": "py"
        }
      },
      "filter": {
        "py": {
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id":{
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword",
        "copy_to": "all"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart"
      },
      "suggestion":{
          "type": "completion",
          "analyzer": "completion_analyzer"
      }
    }
  }
}

HotelDoc实体

import lombok.Data;
import lombok.NoArgsConstructor;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    private Boolean isAD;
    private List<String> suggestion;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
        // 组装suggestion
        if(this.business.contains("/")){
            // business有多个值,需要切割
            String[] arr = this.business.split("/");
            // 添加元素
            this.suggestion = new ArrayList<>();
            this.suggestion.add(this.brand);
            Collections.addAll(this.suggestion, arr);
        }else {
            this.suggestion = Arrays.asList(this.brand, this.business);
        }
    }
}

导入数据

 @Test
    void testBulkRequest() throws IOException {
        // 批量查询酒店数据
        List<Hotel> hotels = hotelService.list();

        // 1.创建Request
        BulkRequest request = new BulkRequest();
        // 2.准备参数,添加多个新增的Request
        for (Hotel hotel : hotels) {
            // 2.1.转换为文档类型HotelDoc
            HotelDoc hotelDoc = new HotelDoc(hotel);
            // 2.2.创建新增文档的Request对象
            request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
        }
        // 3.发送请求
        client.bulk(request, RequestOptions.DEFAULT);
    }

controller类



import cn.itcast.hotel.pojo.PageResult;
import cn.itcast.hotel.pojo.RequestParams;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;

import java.util.List;
import java.util.Map;

@RestController
@RequestMapping("/hotel")
public class HotelController {

    @Autowired
    private IHotelService hotelService;
	// 搜索酒店数据


    @GetMapping("suggestion")
    public List<String> getSuggestions(@RequestParam("key") String prefix) {
        return hotelService.getSuggestions(prefix);
    }
}

service类


import cn.itcast.hotel.mapper.HotelMapper;
import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.pojo.HotelDoc;
import cn.itcast.hotel.pojo.PageResult;
import cn.itcast.hotel.pojo.RequestParams;
import cn.itcast.hotel.service.IHotelService;
import com.alibaba.fastjson.JSON;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;

import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.geo.GeoPoint;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.functionscore.FunctionScoreQueryBuilder;
import org.elasticsearch.index.query.functionscore.ScoreFunctionBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.sort.SortBuilders;
import org.elasticsearch.search.sort.SortOrder;
import org.elasticsearch.search.suggest.Suggest;
import org.elasticsearch.search.suggest.SuggestBuilder;
import org.elasticsearch.search.suggest.SuggestBuilders;
import org.elasticsearch.search.suggest.completion.CompletionSuggestion;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

@Service
public class HotelService extends ServiceImpl<HotelMapper, Hotel> implements IHotelService {

    @Autowired
    private RestHighLevelClient client;

   

    @Override
    public List<String> getSuggestions(String prefix) {
        try {
            // 1.准备Request
            SearchRequest request = new SearchRequest("hotel");
            // 2.准备DSL
            request.source().suggest(new SuggestBuilder().addSuggestion(
                    "suggestions",
                    SuggestBuilders.completionSuggestion("suggestion")
                            .prefix(prefix)
                            .skipDuplicates(true)
                            .size(10)
            ));
            // 3.发起请求
            SearchResponse response = client.search(request, RequestOptions.DEFAULT);
            // 4.解析结果
            Suggest suggest = response.getSuggest();
            // 4.1.根据补全查询名称,获取补全结果
            CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
            // 4.2.获取options
            List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
            // 4.3.遍历
            List<String> list = new ArrayList<>(options.size());
            for (CompletionSuggestion.Entry.Option option : options) {
                String text = option.getText().toString();
                list.add(text);
            }
            return list;
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

  

   

  
}

测试 

elasticsearch的搜索补全提示,elasticsearch,elasticsearch,大数据,搜索引擎文章来源地址https://www.toymoban.com/news/detail-695715.html

到了这里,关于elasticsearch的搜索补全提示的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 搜索引擎(大数据检索)论述[elasticsearch原理相关]

    首先需要大致知道搜索引擎有大致几类:1.全文搜索引擎 2.垂直搜索引擎 3.类目搜索引擎等。 1.全文搜索引擎:是全文本覆盖的,百度,google等都是全文本搜索,就是我搜一个词项“方圆”,那么这个词项可以是数字平方的概念,可以是一个人名,可以是一首歌等,所有的相

    2023年04月08日
    浏览(52)
  • 基于Elasticsearch与Hbase组合框架的大数据搜索引擎

    本项目为学校大数据工程实训项目,共开发4周,答辩成绩不错。代码仓库放文章尾,写的不好,代码仅供参考。 对于结构化数据 ,因为它们具有特定的结构,所以我们一般都是可以通过关系型数据库(MySQL,Oracle 等)的二维表(Table)的方式存储和搜索,也可以建立索引。

    2024年02月09日
    浏览(63)
  • Elasticsearch (ES) 搜索引擎: 数据类型、动态映射、多类型(子字段)

    原文链接:https://xiets.blog.csdn.net/article/details/132348634 版权声明:原创文章禁止转载 专栏目录:Elasticsearch 专栏(总目录) ES 映射字段的 数据类型 ,官网文档参考:Field data types。 下面是 ES 常用的一些基本数据类型。 字符串 类型: keyword :类型。 text :文本类型。

    2024年03月23日
    浏览(63)
  • 《Spring Boot 实战派》--13.集成NoSQL数据库,实现Elasticsearch和Solr搜索引擎

             关于搜索引擎 我们很难实现 Elasticseach 和 Solr两大搜索框架的效果;所以本章针对两大搜索框架,非常详细地讲解 它们的原理和具体使用方法, 首先 介绍什么是搜索引擎 、如何用 MySQL实现简单的搜索引擎,以及Elasticseach 的 概念和接口类; 然后介绍Elasticseach

    2023年04月09日
    浏览(88)
  • ES搜索引擎入门+最佳实践(九):项目实战(二)--elasticsearch java api 进行数据增删改查

            本篇是这个系列的最后一篇了,在这之前可以先看看前面的内容: ES搜索引擎入门+最佳实践(一)_flame.liu的博客-CSDN博客 ES搜索引擎入门+最佳实践(二)_flame.liu的博客-CSDN博客 ES搜索引擎入门+最佳实践(三)_flame.liu的博客-CSDN博客 ES搜索引擎入门+最佳实践(四)_flame.liu的博客

    2024年02月12日
    浏览(55)
  • elasticsearch的搜索补全提示

    当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项 要实现根据字母做补全,就必须对文档按照拼音分词,GitHub上有拼音分词插件 GitHub - medcl/elasticsearch-analysis-pinyin: This Pinyin Analysis plugin is used to do conversion between Chinese characters and Pinyin. 解压到一个文件夹中去

    2024年02月10日
    浏览(35)
  • Java SpringBoot API 实现ES(Elasticsearch)搜索引擎的一系列操作(超详细)(模拟数据库操作)

    小编使用的是elasticsearch-7.3.2 基础说明: 启动:进入elasticsearch-7.3.2/bin目录,双击elasticsearch.bat进行启动,当出现一下界面说明,启动成功。也可以访问http://localhost:9200/ 启动ES管理:进入elasticsearch-head-master文件夹,然后进入cmd命令界面,输入npm run start 即可启动。访问http

    2024年02月04日
    浏览(53)
  • 分布式搜索引擎ElasticSearch——搜索功能

    DSL查询分类 DSL官方文档 全文检索查询 精确查询 地理查询 复合查询 Function Score Query function score query Boolean Query 排序 分页 官方文档 高亮 快速入门 match,term,range,bool查询 排序和分页 高亮显示 就是在前面抽取的解析代码中进一步添加关于高亮的解析部分,因为highlight和so

    2024年02月01日
    浏览(53)
  • 分布式搜索引擎——elasticsearch搜索功能

    Elasticsearch提供了基于JSON的DSL (Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如: match_query multi_match_query 精确查询:根据精确词条

    2024年02月05日
    浏览(64)
  • Elasticsearch 搜索引擎

    一、创建索引库 *put* *http://localhost:9200/* *索引库名称* PUT http://localhost:9200/xc_course number_of_shards:设置分片的数量,在集群中通常设置多个分片,表示一个索引库将拆分成多片分别存储不同 的结点,提高了ES的处理能力和高可用性,入门程序使用单机环境,这里设置为1。 numb

    2024年02月01日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包