大数据课程K22——Spark的SparkSQL的API调用

这篇具有很好参考价值的文章主要介绍了大数据课程K22——Spark的SparkSQL的API调用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州

 ▲ 本章节目的

⚪ 掌握Spark的通过api使用SparkSQL;

一、通过api使用SparkSQL

1. 实现步骤

1. 打开scala IDE开发环境,创建一个scala工程。

2. 导入spark相关依赖jar包。

大数据课程K22——Spark的SparkSQL的API调用,大数据,spark,分布式

3. 创建包路径以object类。

4. 写代码。

5)打jar包,并上传到linux虚拟机上

6)在spark的bin目录下

执行:sh spark-submit --class cn.tedu.sparksql.Demo01 ./sqlDemo01.jar

7)最后检验

2. 代码示例

package cn.tedu.sparksql文章来源地址https://www.toymoban.com/news/detail-695723.html

到了这里,关于大数据课程K22——Spark的SparkSQL的API调用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark---SparkSQL介绍

    Shark是基于Spark计算框架之上且兼容Hive语法的SQL执行引擎,由于底层的计算采用了Spark,性能比MapReduce的Hive普遍快2倍以上,当数据全部load在内存的话,将快10倍以上,因此Shark可以作为交互式查询应用服务来使用。除了基于Spark的特性外,Shark是完全兼容Hive的语法,表结构以及

    2024年01月21日
    浏览(43)
  • 【spark】SparkSQL

    什么是SparkSQL SparkSQL是Spark的一个模块,用于处理海量 结构化数据 为什么学习SparkSQL SparkSQL是非常成熟的海量结构化数据处理框架: 学习SparkSQL主要在2个点: SparkSQL本身十分优秀,支持SQL语言、性能强、可以自动优化、API简单、兼容HIVE等等 企业大面积在使用SparkSQL处理业务数

    2024年01月20日
    浏览(47)
  • Spark(15):SparkSQL之DataFrame

    目录 0. 相关文章链接 1. DataFrame的作用 2. 创建DataFrame 3. SQL 语法 4. DSL 语法 5. RDD 转换为 DataFrame 6. DataFrame 转换为 RDD  Spark文章汇总          Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式。DataFrame API 既有 transformation 操作也有

    2024年02月13日
    浏览(41)
  • Spark(16):SparkSQL之DataSet

    目录 0. 相关文章链接 1. DataSet的定义 2. 创建DataSet 2.1. 使用样例类序列创建 DataSet 2.2. 使用基本类型的序列创建 DataSet 2.3. 注意 3. RDD 转换为 DataSet 4. DataSet 转换为 RDD  Spark文章汇总  DataSet 是具有强类型的数据集合,需要提供对应的类型信息。 在实际使用的时候,很少用到

    2024年02月13日
    浏览(40)
  • spark第四章:SparkSQL基本操作

    spark第一章:环境安装 spark第二章:sparkcore实例 spark第三章:工程化代码 spark第四章:SparkSQL基本操作 接下来我们学习SparkSQL他和Hql有些相似。Hql是将操作装换成MR,SparkSQL也是,不过是使用Spark引擎来操作,效率更高一些 以上是这次博客需要的所有依赖,一次性全加上。 一共

    2024年02月07日
    浏览(41)
  • 【Spark精讲】一文讲透SparkSQL执行过程

    逻辑计划阶段会将用户所写的 SQL语句转换成树型数据结构( 逻辑算子树 ), SQL语句中蕴含的逻辑映射到逻辑算子树的不同节点。 顾名思义,逻辑计划阶段生成的逻辑算子树并不会直接提交执行,仅作为中间阶段 。 最终逻辑算子树的生成过程经历 3 个子阶段,分别对应 未解析

    2024年02月03日
    浏览(31)
  • spring boot java项目整合Scala&Spark,接口api调用方式调用scala代码,配置分享

    版本说明: spring boot: 2.5.9 jdk:1.8 spark:2.4.5 sclala:2.11.12 首先你需要有一个完美的spring boot项目(java版本)能成功运行,这就不赘述了,按照网上的自己搭建吧,然后重要的来了,我捣鼓了两天时间,各样的报错见过了,网上的处理方法要嘛是不全,要嘛是没有用,各种办

    2024年02月10日
    浏览(49)
  • SparkSQL与Hive整合(Spark On Hive)

    hive metastore元数据服务用来存储元数据,所谓元数据,即hive中库、表、字段、字段所属表、表所属库、表的数据所在目录及数据分区信息。元数据默认存储在hive自带的Derby数据库。在内嵌模式和本地模式下,metastore嵌入在主hive server进程中。但在远程模式下,metastore 和 hive

    2024年02月12日
    浏览(77)
  • 2023_Spark_实验十四:SparkSQL入门操作

    1、将emp.csv、dept.csv文件上传到分布式环境,再用  hdfs  dfs -put dept.csv /input/ hdfs  dfs -put emp.csv /input/ 将本地文件put到hdfs文件系统的input目录下 2、或者调用本地文件也可以。区别:sc.textFile(\\\"file:///D:\\\\temp\\\\emp.csv\\\") StructType 是个case class,一般用于构建schema. 因为是case class,所以使

    2024年02月08日
    浏览(39)
  • spark中Rdd依赖和SparkSQL介绍--学习笔记

    1.1概念 rdd的特性之一 相邻rdd之间存在依赖关系(因果关系) 窄依赖 每个父RDD的一个Partition最多被子RDD的一个Partition所使用 父rdd和子rdd的分区是一对一(多对一) 触发窄依赖的算子 map(),flatMap(),filter() 宽依赖 父RDD的一个partition会被子rdd的多个Partition所使用 父rdd和子rdd的

    2024年01月17日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包