进阶C语言-深度剖析数据在内存中的存储

这篇具有很好参考价值的文章主要介绍了进阶C语言-深度剖析数据在内存中的存储。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言

📖1.数据类型介绍

📝通过前面的学习,我们已经学习了基本的内置类型:

char    //字符数据类型
short   //短整型
int     //整型
long    //长整型
long long //更长的整型
float   //单精度浮点数
double   //双精度浮点数

🔎类型的意义

  1. 使用这个类型开辟内存空间的大小。
  2. 如何看待内存空间的视角。

🎈1.1类型的基本归类

🔭整形家族

//字符在内存中存储的是字符的ASCII码值,ASCII码值是整型,所以字符类型归类到整型家族。
//unsigned-无符号的
//signed-有符号的
char
    unsigned char
    signed char
short
    unsigned short
    signed short
int 
    unsigned int
    signed int
long 
    unsigned long
    signed long

🔭浮点数家族

float
double

🔭构造类型(自定义类型)

数组类型
结构体类型 struct
枚举类型 enum
联合类型 union

🔭指针类型

int *pi;
char *pc;
float *pf;
void *pv;

🔭空类型

void表示空类型(无类型)
通常用于函数的返回类型、函数参数、指针类型。

void test(void)
{
//第一个void表示test函数不会返回任何值
//第二个void表示test函数没有参数
}

📖2.整型在内存中的存储

✅我们之前了解到一个变量的创建是要在内存中开辟空间的,空间的大小是根据不同的类型决定的。
计算机能够处理的是二进制的数据,整型和浮点型数据在内存中也都是以二进制的形式进行存储的,想要了解清楚整型在内存中的存储,我们就需要了解一下原码、反码和补码。

🎈2.1原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示正用1表示负,而数值位正数的原、反、补码都相同。

🔎负整数的三种表示方法各不相同:

原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。

注意:对于整型来说,数据存放内存中其实存放的是补码❗

为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

🎈2.2大小端介绍

#include <stdio.h>
int main()
{
	int a = 20;
	//原码、反码、补码:0000 0000 0000 0000 0000 0000 0001 0100
	//                    0    0   0    0     0    0     1   4
	//0x 00 00 00 14
	return 0;
}

进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言

在前面的示例中,变量a储存的是补码,但是顺序有点不一样,这是为什么呢?这里我们就需要了解一下大端小端。
🔭什么是大端小端?

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言

🔎为什么有大端和小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bitchar之外,还有16 bitshort
型,32 bitlong型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32
位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因
此就导致了大端存储模式和小端存储模式。
例如:一个 16bitshortx ,在内存中的地址为 0x0010x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARMDSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

我们也可以通过一下程序来进行测试:

#include <stdio.h>
int check_sys()
{
	//01 00 00 00
	int i = 1;
	return (*(char*)&i);
}
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言

🎈2.3练习

🔭练习1:

#include <stdio.h>
int main()
{
	char a = -1;
	//原码:10000000000000000000000000000001
	//反码:11111111111111111111111111111110
	//补码:11111111111111111111111111111111
	//11111111-a
	signed char b = -1;
	//11111111-b
	unsigned char c = -1;
	//11111111-c
	printf("a = %d,b = %d,c = %d\n", a, b, c);
	//%d是十进制的形式打印有符号的整数
	//a整型提升:11111111111111111111111111111111
	//反码:    10000000000000000000000000000000
	//补码:    10000000000000000000000000000001
	//b整型提升:11111111111111111111111111111111
	//反码:    10000000000000000000000000000000
	//补码:    10000000000000000000000000000001
	//c整型提升:00000000000000000000000011111111(正整数原码、反码、补码一致)为255
	return 0;
}

✅运行结果:
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言
🔭练习2:

#include <stdio.h>
int main()
{
	//原码:10000000000000000000000010000000
	//反码:11111111111111111111111101111111
	//补码:11111111111111111111111110000000
	//10000000-a
	//整形提升:11111111111111111111111110000000
	char a = -128;
	//%u-打印无符号整数
	printf("%u\n", a);
	return 0;
}

✅运行结果:
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言
🔭练习3:

#include <stdio.h>
int main()
{
	//原码:00000000000000000000000010000000
	//反码:01111111111111111111111101111111
	//补码:01111111111111111111111110000000
	//10000000-a
	//整形提升:11111111111111111111111110000000
	char a = 128;
	//%u-打印无符号整数
	printf("%u\n", a);
	return 0;
}

✅运行结果:
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言
🏆注意
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言

进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言
🔭练习4:

#include <stdio.h>
int main()
{
	int i = -20;
	//原码:10000000000000000000000000010100
	//反码:11111111111111111111111111101011
	//补码:11111111111111111111111111101100
	unsigned int j = 10;
	//补码:00000000000000000000000000001010
	//补码运算结果:11111111111111111111111111110110
	//反码:        11111111111111111111111111110101
	//原码          10000000000000000000000000001010结果为-10
	printf("%d\n", i + j);
	return 0;
}

✅运行结果:
进阶C语言-深度剖析数据在内存中的存储,c语言,开发语言

📖3.浮点型在内存中的存储

常见的浮点数:

3.14159
1E10

浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义

🎈3.1浮点数存储规则

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×102
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。至于指数E,情况就比较复杂。首先,E为一个无符号整(unsigned int)这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,210的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)

好啦,关于数据在内存中存储的知识点到这里就结束啦,后期会继续更新C语言的相关知识,欢迎大家持续关注、点赞和评论!❤️❤️❤️文章来源地址https://www.toymoban.com/news/detail-696238.html

到了这里,关于进阶C语言-深度剖析数据在内存中的存储的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 温故c语言——深度剖析数据在内存中的存储

    数据类型详细介绍 整形在内存中的存储:原码、反码、补码 大小端字节序介绍及判断 浮点型在内存中的存储解析 基本内置数据类型有: 类型的意义: 使用这个类型开辟内存空间的大小(大小决定了使用范围)。 如何看待内存空间的视角。 1.1 类型的基本归类: 整形家族:

    2023年04月22日
    浏览(53)
  • 深度剖析数据在内存中的存储——int类型(整型)和float类型(浮点数)在内存中是如何存储和使用的?

    众所周知,C语言中有几种基本的内置数据类型: char - 字符数据类型 short - 短整型 int - 整型 long - 长整型 long long - 更长的整型 float - 单精度浮点数 double - 双精度浮点数 那为什么要设置这么多内置数据类型呢?类型的意义是什么? 本文将为大家介绍整型和浮点数在内存中的存

    2023年04月22日
    浏览(36)
  • 数据在内存中的存储1(C语言进阶)

    ❤️ 作者简介 :RO-BERRY 致力于C、C++、数据结构、TCP/IP、数据库等等一系列知识,对纯音乐有独特的喜爱 📗 日后方向 : 偏向于CPP开发以及大数据方向,如果你也感兴趣的话欢迎关注博主,期待更新 我们今天来学习数据在内存中的存储 前面我们已经学习了基本的内置类型:

    2024年02月16日
    浏览(25)
  • 『C语言进阶』数据在内存中的存储规则

    🔥 博客主页 : 小羊失眠啦. 🔖 系列专栏 : C语言 🌥️ 每日语录 : 精诚所至,金石为开。 ❤️ 感谢大家点赞👍收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 小羊近期已经将C语言初阶学习

    2024年02月10日
    浏览(30)
  • c语言进阶部分详解(数据在内存中的存储)

    大家好,今天要进行梳理的内容是数据在内存中的存储相关内容。 在C语言中,数据在内存中的存储是一个非常重要的概念。了解数据在内存中的存储方式可以帮助我们更好地理解程序的执行过程,优化内存使用,提高程序的性能。 目录 一.数据类型介绍 1.类型的基本归类 

    2024年02月13日
    浏览(27)
  • 【c语言进阶】深入挖掘数据在内存中的存储

    铁汁们,今天给大家分享一篇数组及详解冒泡排序,来吧,开造⛳️ 类型的 意义 : 类型是用来创建变量, 变量的创建需要在内存中开辟一块内存空间 ,用来存储变量的值, 类型的大小决定了开辟内存空间的大小 。 基本内置类型: c语言标准只规定sizeof(long)只要大于等于

    2024年02月08日
    浏览(55)
  • C语言进阶——数据在内存中的存储,你知道吗?

    之前我们涉及关于这一部分的知识只是大致的进行讲解,今天我们要把这个内容详细的讲解和总结。 在前面我们已经学习了基本的内置类型(内置类型就是语言自身定义的类型): char                //字符数据类型 short               //短整型 int                   //整形

    2024年02月02日
    浏览(28)
  • 深度刨析数据在内存中的储存(C语言进阶)

    本章重点 数据类型详细介绍 整型在内存中的储存 大小端字节序介绍及判断 浮点型在内存中的存储解析 前面我们已经介绍过基本的内置类型,以及他们所占空间的大小 ✊类型的意义 : 使用这个类型开辟内存空间的大小(大小决定了适用范围) 如何看待内存空间视角 1.1 类

    2024年02月14日
    浏览(28)
  • C进阶:数据在内存中的存储(2)

    在上一篇博文中,相信大家对于数据类型以及整数在内存中的存储有了一定了解,那么,浮点数是怎么在内存中存储的呢?下面来看一下我的讲解。 浮点数家族: 包括:float,double,long double类型。与limits.h相似, 浮点数也有限制范围的头文件float.h. 与limits.h相似,float.h也包括

    2024年02月11日
    浏览(28)
  • C进阶:数据在内存中的存储(1)

    大家好,感谢大家最近的支持,今天也是开始了C进阶一系列的博文的创作,欢迎大佬们来指点,欢迎来一起沟通!!! 我们都知道:C语言具有以下几种数据类型: 这里注意的是: sizeof(int) = sizeof(long), 在上述类型中,我们可以通过limits.h中的(MAX和MIN)获得类型的的最大值

    2024年02月06日
    浏览(27)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包