本文主要介绍了几种限流方法:Guava RateLimiter、简单计数、滑窗计数、信号量、令牌桶,漏桶算法和nginx限流等等
1、引入guava集成的工具
pom.xml 文件
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>23.0</version>
</dependency>
demo代码实现
package com.znkeji.zn_wifi_carck.guava;
import com.google.common.util.concurrent.RateLimiter;
public class GuavaRateLimiterTest {
//比如每秒生产10个令牌,相当于每100ms生产1个令牌
//RateLimiter是Guava库中的一个限流器
// 基于PPS进行限流
//基于PPS限流的同时提供热启动
private RateLimiter rateLimiter=RateLimiter.create(10);
/**
* 模拟执行业务方法
*/
public void exeBiz(){
if (rateLimiter.tryAcquire(1)){///返回boolean 尝试获取许可,如果该许可可以在无延迟下的情况下立即获取得到的话
try {
Thread.sleep(50);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("线程"+Thread.currentThread().getName()+":执行业务逻辑");
}else {
System.out.println("线程"+Thread.currentThread().getName()+":被限流了");
}
}
public static void main(String[] args) throws InterruptedException {
GuavaRateLimiterTest guavaRateLimiterTest = new GuavaRateLimiterTest();
System.out.println("线程开始等待");
Thread.sleep(500); //等待500ms,让limiter生产一些令牌
System.out.println("线程睡了0.5秒");
//模拟瞬间生产100个线程请求
for (int i=0;i<100;i++){
new Thread(guavaRateLimiterTest::exeBiz).start();
}
}
}
2.令牌桶算法
package com.znkeji.zn_wifi_carck.guava;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
/**
* 令牌桶算法:一个存放固定容量令牌的桶,按照固定速率往桶里添加令牌,如有剩余容量则添加,没有则放弃。如果有请求进来,则需要先从桶里获取令牌,当桶里没有令牌可取时,则拒绝任务。
*
* 令牌桶的优点是:可以改变添加令牌的速率,一旦提高速率,则可以处理突发流量。
*/
public class TokenBucket {
/**
* 定义的桶
*/
public class Bucket {
//容量
int capacity;
//速率,每秒放多少
int rateCount;
//目前token个数
AtomicInteger curCount = new AtomicInteger(0);
public Bucket(int capacity, int rateCount) {
this.capacity = capacity;
this.rateCount = rateCount;
}
public void put() {
if (curCount.get() < capacity) {
System.out.println("目前数量==" + curCount.get() + ", 我还可以继续放");
curCount.addAndGet(rateCount);
}
}
public boolean get() {
if (curCount.get() >= 1) {
curCount.decrementAndGet();
return true;
}
return false;
}
}
// @Test
public void testTokenBucket() throws InterruptedException {
Bucket bucket = new Bucket(5, 2);
//固定线程,固定的速率往桶里放数据,比如每秒N个
ScheduledThreadPoolExecutor scheduledCheck = new ScheduledThreadPoolExecutor(1);
scheduledCheck.scheduleAtFixedRate(() -> {
bucket.put();
}, 0, 1, TimeUnit.SECONDS);
//先等待一会儿,让桶里放点token
Thread.sleep(6000);
//模拟瞬间10个线程进来拿token
for (int i = 0; i < 10; i++) {
new Thread(() -> {
if (bucket.get()) {
System.out.println(Thread.currentThread() + "获取到了资源");
} else {
System.out.println(Thread.currentThread() + "被拒绝");
}
}).start();
}
//等待,往桶里放token
Thread.sleep(3000);
//继续瞬间10个线程进来拿token
for (int i = 0; i < 10; i++) {
new Thread(() -> {
if (bucket.get()) {
System.out.println(Thread.currentThread() + "获取到了资源");
} else {
System.out.println(Thread.currentThread() + "被拒绝");
}
}).start();
}
}
}
3、滑窗计数器文章来源:https://www.toymoban.com/news/detail-696347.html
package com.znkeji.zn_wifi_carck.guava;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
/**
* 滑窗计数器 打个比方,某接口每秒允许100个请求,设置一个滑窗,窗口中有10个格子,每个格子占100ms,每100ms移动一次。滑动窗口的格子划分的越多,滑动窗口的滚动就越平滑,限流的统计就会越精确。
*/
public class SliderWindowRateLimiter implements Runnable {
//每秒允许的最大访问数
private final long maxVisitPerSecond;
//将每秒时间划分N个块
private final int block;
//每个块存储的数量
private final AtomicLong[] countPerBlock;
//滑动窗口划到了哪个块儿,可以理解为滑动窗口的起始下标位置
private volatile int index;
//目前总的数量
private AtomicLong allCount;
/**
* 构造函数
*
* @param block,每秒钟划分N个窗口
* @param maxVisitPerSecond 每秒最大访问数量
*/
public SliderWindowRateLimiter(int block,long maxVisitPerSecond){
this.block=block;
this.maxVisitPerSecond=maxVisitPerSecond;
countPerBlock= new AtomicLong[block];
for (int i=0;i<block;i++){
countPerBlock[i]=new AtomicLong();
}
allCount=new AtomicLong(0);
}
/**
* 判断是否超过最大允许数量
*
* @return
*/
public boolean isOverLimit() {
return currentQPS() > maxVisitPerSecond;
}
/**
* 获取目前总的访问数
*
* @return
*/
public long currentQPS() {
return allCount.get();
}
/**
* 请求访问进来,判断是否可以执行业务逻辑
*/
public void visit(){
countPerBlock[index].incrementAndGet();
allCount.incrementAndGet();
if (isOverLimit()){
System.out.println(Thread.currentThread().getName()+"被限流了,currentQPS:"+currentQPS());
}else {
System.out.println(Thread.currentThread().getName()+"执行业务逻辑,currentQPS:"+currentQPS());
}
}
/**
* 定时执行器,
* 每N毫秒滑块移动一次,然后再设置下新滑块的初始化数字0,然后新的请求会落到新的滑块上
* 同时总数减掉新滑块上的数字,并且重置新的滑块上的数量
*/
@Override
public void run() {
index=(index+1)%block;
long val= countPerBlock[block].getAndSet(0);
allCount.addAndGet(-val);
}
public static void main(String[] args) {
SliderWindowRateLimiter sliderWindowRateLimiter = new SliderWindowRateLimiter(10, 100);
//固定的速率移动滑块
ScheduledExecutorService scheduledExecutorService = Executors.newSingleThreadScheduledExecutor();
scheduledExecutorService.scheduleAtFixedRate(sliderWindowRateLimiter, 100, 100, TimeUnit.MILLISECONDS);
//模拟不同速度的请求
new Thread(() -> {
while (true) {
sliderWindowRateLimiter.visit();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
//模拟不同速度的请求
new Thread(() -> {
while (true) {
sliderWindowRateLimiter.visit();
try {
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
}
}
4、信号量文章来源地址https://www.toymoban.com/news/detail-696347.html
package com.znkeji.zn_wifi_carck.guava;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.Semaphore;
/**
* 利用Semaphore,每隔固定速率,释放Semaphore的资源。线程获取到资源,则执行业务代码。
*/
public class SemaphoreOne {
private static Semaphore semaphore = new Semaphore(10);
public static void bizMethod() throws InterruptedException {
if (!semaphore.tryAcquire()) {
System.out.println(Thread.currentThread().getName() + "被拒绝");
return;
}
System.out.println(Thread.currentThread().getName() + "执行业务逻辑");
Thread.sleep(500);//模拟处理业务逻辑需要1秒
semaphore.release();
}
public static void main(String[] args) {
Timer timer = new Timer();
timer.scheduleAtFixedRate(new TimerTask() {
@Override
public void run() {
semaphore.release(10);
System.out.println("释放所有锁");
}
}, 1000, 1000);
for (int i = 0; i < 10000; i++) {
try {
Thread.sleep(10);//模拟每隔10ms就有1个请求进来
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> {
try {
SemaphoreOne.bizMethod();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
}
}
到了这里,关于java进行系统的限流实现--Guava RateLimiter、简单计数、滑窗计数、信号量、令牌桶的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!