动态规划之简单多状态

这篇具有很好参考价值的文章主要介绍了动态规划之简单多状态。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 按摩师(easy)

1.题目链接:按摩师
2.题目描述:一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
示例 1:

输入: [1,2,3,1]
输出: 4 解释: 选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。

示例 2:

输入: [2,7,9,3,1]
输出: 12 解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。

示例 3:

输入: [2,1,4,5,3,1,1,3]
输出: 12 解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。

3.问题分析:
对于动态规划多状态这类问题,看完题目后,对于某个事物,有明显几个状态;比如这道题的事物就是这个按摩师,这个按摩师可能有工作,休息两种状态,而我们要做的就是将这两种状态表示出来,然后计算不同状态下他所能达到的值。 最后依据题目来求解最大值还是最小值。

  1. 状态表示:先用一个dp[n]进行表示,然后就会发现,对于某一个位置来说,这个位置的客人可能选,可能不选(不选可能就是在休息),那么很明显用一个dp表是不能表示出这两种状态的。所以状态表示可以如下:f[i] 表⽰:选择到 i 位置时, nums[i] 必选,此时的最⻓预约时⻓; g[i] 表⽰:选择到 i 位置时, nums[i] 不选,此时的最⻓预约时⻓。
  2. 状态转移方程:对于f[i]数组来说,选择到 i 位置时, nums[i] 必选,此时的最⻓预约时⻓,所以如果i位置必选,那么i-1就不能再选,刚好g[i] 表示的就是 nums[i] 不选,此时的最⻓预约时,此时f[i]=nums[i] + g[i-1]; g[i]表示i位置不选,那么i-1可以选也可以不选,取这两者最大值,g[i]=max(f[i-1], g[i-1])。 所以状态表示分别为 f[i] = nums[i] + g[i - 1];g[i] = max(f[i - 1], g[i - 1]);
  3. 初始化:对于f[i]来说,i位置表示必选,所以f[0]=nums[0];对于g[i]来说,i位置表示不选,所以g[0]=0
  4. 填表顺序:根据状态转移⽅程得从左往右,两个表⼀起填。
  5. 返回值:根据状态表⽰,应该返回max(f[n - 1], g[n - 1])

代码如下:

class Solution 
{
public:
    int massage(vector<int>& nums) 
    {
        int n = nums.size();
        //判断是否为空
        if (n == 0)
            return 0;
        vector<int> f(n), g(n);
        //初始化
        f[0] = nums[0];
        for (int i = 1; i < n; ++i)
        {
            f[i] = nums[i] + g[i - 1];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        return max(f[n - 1], g[n - 1]);
    }
};

2. 打家劫舍II (medium)

1.题目链接:打家劫舍II
2.题目描述:你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2),因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [1,2,3]
输出:3

3.问题分析:
这道题上道题的区别就是将这个nums数组看作是一个环形数组,这样的话就需要考虑临界区,也就是对首尾的状况进行分析;具体有如下几种:如果第一个位置选,那么最后一个位置就不能选,也就是在区间[0,n - 2];如果最后一个位置选,那么第一个位置就不能选,也就是区间[1,n - 1]。 还有没有别的情况?没有了。然后对两个区间[0,n - 2]和[1,n - 1]分别进行一次按摩师的问题,就可以求出最大值。

  1. 状态表示:f[i] 表⽰:选择到 i 位置时, nums[i] 必选,此时偷取利润的最大值; g[i] 表⽰:选择到 i 位置时, nums[i] 不选,此时偷取利润的最大值。
  2. 状态转移方程:如按摩师的分析方式,状态转移方程如下: f[i] = nums[i] + g[i - 1];g[i] = max(f[i - 1], g[i - 1]);
  3. 初始化:对于f[i]来说,i位置表示必选,所以f[0]=nums[0];对于g[i]来说,i位置表示不选,所以g[0]=0
  4. 填表顺序:根据状态转移⽅程得从左往右,两个表⼀起填。
  5. 返回值:根据状态表⽰,应该返回max(f[n - 1], g[n - 1])

代码如下:

class Solution 
{
public:
    int _rob(vector<int>& nums, int left, int right)
    {
        if (left > right)
            return 0;
        int n = nums.size();
        vector<int> f(n), g(n);
        //初始化第一个值
        f[left] = nums[left];
        for (int i = left + 1; i <= right; ++i)
        {
            f[i] = nums[i] + g[i - 1];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        return max(f[right], g[right]);
    }
    int rob(vector<int>& nums) 
    {
        int n = nums.size();
        //判断临界条件
        if (n == 1)
            return nums[0];
        //分别求出两个区间[0,n - 2]和[1,n - 1]的最大值
        return max(_rob(nums, 0, n - 2), _rob(nums, 1, n - 1));
    }
};

3. 删除并获得点数(medium)

1.题目链接:删除并获得点数
2.题目描述:
给你一个整数数组 nums ,你可以对它进行一些操作。
每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。
开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:

输入:nums = [3,4,2]
输出:6 解释: 删除 4 获得 4 个点数,因此 3 也被删除。 之后,删除 2 获得 2个点数。总共获得 6 个点数。

示例 2:

输入:nums = [2,2,3,3,3,4]
输出:9 解释: 删除 3 获得 3 个点数,接着要删除两个 2 和 4 。 之后,再次删除3 获得 3 个点数,再次删除 3 获得 3 个点数。 总共获得 9 个点数。

提示:

1 <= nums.length <= 2 * 10^4
1 <= nums[i] <= 10^4

3.问题分析:
这道题就需要很好的理解能力了,大概意思是给你一个数组,然后你可以删除一个元素并获得它的大小(这里就叫做点数),但是你如果删除了某个数,比如5,那么你就不能再删除数组中的3和4(上述加红区域)。看到这会想到什么??是不是就和上述第一题差不多了,i位置必选的话,i-1与i+1位置就不能再选。然后就需要一些操作,将本题变为与上述题一样的解法即可,思路如下:由提示可知道1 <= nums[i] <= 10^4,所以用一个10001大小的数组将数据管理起来,下标对应的就是每个数据,所存的元素表示该下标总共的和(例如4出现3次,那么4的位置所存的数据就为12)。

  1. 状态表示:如上题一样,用f[i]表示i位置删除,所获取的最大点数;g[i]表示i位置不删除,所获取的最大点数
  2. 状态转移方程:如按摩师的分析方式,状态转移方程如下: f[i] = hash[i] + g[i - 1];g[i] = max(f[i - 1], g[i - 1]);
  3. 初始化:对于f[0]位置来说,必选后值为0。
  4. 填表顺序:从左往右,两表一次填写。
  5. 返回值:max(f[N - 1], g[N - 1])。

代码如下:

class Solution 
{
public:
    int deleteAndEarn(vector<int>& nums) 
    {
        const int N = 10001;
        int hash[N] = { 0 };
        for (auto& x : nums)
            hash[x] += x;
        
        vector<int> f(N), g(N);
        for (int i = 1; i < N; ++i)
        {
            f[i] = hash[i] + g[i - 1];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        return max(f[N - 1], g[N - 1]);
    }
};

4. 买卖股票的最佳时机含冷冻期(medium)

1.题目链接:买卖股票的最佳时机含冷冻期
2.题目描述:给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。​
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

示例 2:

输入: prices = [1]
输出: 0

提示:

1 <= prices.length <= 5000
0 <= prices[i] <= 1000

3.问题分析:
这类题先分状态,然后对每种状态再进行详细讨论。如本题状态该怎么分?在某一天的交易状态可能为买入、冷冻期,冷冻期之后为可交易状态(可交易状态是需要自行找出的)因为卖出的那一刻和进入冷冻期的利润相同,所以买卖股票问题不需要关心卖出状态(如果考虑卖出状态的话,要记得冷冻期的利润是和当天卖出状态利润相同的)。

  1. 状态表示:由于有「买⼊」「可交易」「冷冻期」三个状态,因此我们可以选择⽤三个数组,其中:dp[0][j] 表⽰:第 i 天结束后,处于「买⼊」状态,此时的最⼤利润;dp[1][j] 表⽰:第 i 天结束后,处于「冷冻期」状态,此时的最⼤利润;dp[2][j] 表⽰:第 i 天结束后,处于「可交易」状态,此时的最⼤利润
  2. 状态转移方程:由下图进行分析:
    动态规划之简单多状态,动态规划,算法

箭头末尾表示昨天,箭头前端表示今天。nothing表示什么也不用做。 由买入状态开始分析:由买入能不能到买入状态?什么也不干就可以,由买入到冷冻期?昨天卖出,今天就到冷冻期 ,由买入到可交易?买入后只能卖出到冷冻期,所以不可行。 冷冻期状态:由冷冻期到冷冻期?不行,由冷冻期到买入,显而易见也不行,由冷冻期到可交易?昨天冷冻期,什么也不干,今天就能到达可交易。可交易状态:由可交易到可交易?昨天可交易状态什么也不干,今天就又是可交易状态,由可交易到买入?昨天可交易,今天当然可以买入,由可交易到冷冻期?不行。
所以状态转移方程如下:dp[0][j] = max(dp[0][j - 1], dp[2][j - 1] - prices[j]); dp[1][j] = dp[0][j - 1] + prices[j]; dp[2][j] = max(dp[2][j - 1], dp[1][j - 1]);

  1. 初始化:三种状态都会⽤到前⼀个位置的值,因此需要初始化每⼀⾏的第⼀个位置:
    dp[0][0] :此时要想处于「买⼊」状态,必须把第⼀天的股票买了,因此 dp[0][0] = -prices[0] ;
    dp[1][0] :啥也不⽤⼲即可,因此 dp[1][0] = 0 ;
    dp[2][0] :⼿上没有股票,买⼀下卖⼀下就处于冷冻期,此时收益为 0 ,因此 dp[2][0] = 0 。
  2. 填表顺序:从上到下,从左往右,三个表⼀起填。
  3. 返回值:买入状态的利润肯定不是最大的,所以返回冷冻期状态或可交易状态的最大值即可。

代码如下:

class Solution 
{
public:
    int maxProfit(vector<int>& prices) 
    {
        int n = prices.size();
        vector<vector<int>> dp(3, vector<int>(n));
        dp[0][0] = -prices[0];
        for (int j = 1; j < n; ++j)
        {
            dp[0][j] = max(dp[0][j - 1], dp[2][j - 1] - prices[j]);
            dp[1][j] = dp[0][j - 1] + prices[j];
            dp[2][j] = max(dp[2][j - 1], dp[1][j - 1]);
        }
        return max(dp[1][n - 1], dp[2][n - 1]);
    }
};

5. 买卖股票的最佳时机III(hard)

1.题目链接:买卖股票的最佳时机III
2.题目描述:给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔(k笔) 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第6天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:

输入:prices = [1]
输出:0

提示:

1 <= prices.length <= 10^5
0 <= prices[i] <= 10^5

3.问题分析:
这道题与上道题相比,多需要考虑一个交易次数,所以需要再增加一个维度用来表示交易次数。 对于状态来说,只有买入状态和可交易状态,所以用f,g两个数组来进行表示,第二个维度j表示的就是交易次数。 买入股票,交易次数不增加,只有当卖出股票,才算一次完整的交易,交易次数增加。

  1. 状态表示:f[i][j] 表⽰:第 i 天结束后,完成了 j 次交易,处于「买⼊」状态,此时的最⼤利润; g[i][j] 表⽰:第 i 天结束后,完成了 j 次交易,处于「卖出」状态,此时的最⼤利润。
  2. 状态转移⽅程:
    对于 f[i][j] ,有两种情况到这个状态:
    在 i - 1 天的时候,交易了 j 次,处于「买⼊」状态,第 i 天啥也不⼲即可。此时最⼤利润为: f[i - 1][j] ;在 i - 1 天(也就是昨天)的时候,交易了 j 次,处于「可交易」状态,第 i 天的时候把股票买了。此时的最⼤利润为: g[i - 1][j] - prices[i] 。综上,所求的是「最⼤利润」,因此是两者的最⼤值: f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]) 。
    对于 g[i][j] ,有两种情况可以到达这个状态:
    在 i - 1 天的时候,交易了 j 次,处于「卖出」状态,第 i 天啥也不⼲即可。此时的最⼤利润为: g[i - 1][j] ;在 i - 1 天的时候,交易了 j - 1 次,处于「买⼊」状态,第 i 天把股票卖了,然后就完成了 j ⽐交易。此时的最⼤利润为: f[i - 1][j - 1] + prices[i] 。但是这个状态不⼀定存在,要先判断⼀下。要求的是最⼤利润,因此状态转移⽅程为:g[i][j] = g[i - 1][j]; if(j >= 1) g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);
  3. 初始化:
    由于需要⽤到 i = 0 时的状态,因此初始化第⼀⾏即可。
    当处于第 0 天的时候,只能处于「买⼊过⼀次」的状态,此时的收益为 -prices[0] ,因此 f[0][0] = - prices[0] 。
    为了取 max 的时候,⼀些不存在的状态「起不到⼲扰」的作⽤,我们统统将它们初始化为 -INF (⽤ INT_MIN 在计算过程中会有「溢出」的⻛险,这⾥ INF 折半取0x3f3f3f3f ,⾜够⼩即可)溢出情况:当初始化为负无穷时,-prices[0]-oo就会溢出。
  4. 填表顺序:从上往下填每⼀⾏,每⼀⾏从左往右,两个表⼀起填。
  5. 返回值:返回每次交易的最大值。

代码如下:

class Solution {
public:
    const int INF = 0x3f3f3f3f;
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        vector<vector<int>> f(n, vector<int>(3, -INF)), g(n, vector<int>(3, -INF));
        f[0][0] = -prices[0], g[0][0] = 0;
        for (int i = 1; i < n; ++i) 
        {
            for (int j = 0; j < 3; ++j)
            {
                f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);
                if (j >= 1) //防止越界
                    g[i][j] = max(g[i - 1][j], f[i - 1][j - 1] + prices[i]);
                else 
                    g[i][j] = g[i - 1][j];
            }
        }
        int ret = 0;
        for (int j = 0; j < 3; ++j)
            ret = max(ret, g[n - 1][j]);
        return ret;
   }      
 } ;

对于买卖股票的最佳时机IV问题来说,交易k次,分析方式与上道题基本无异,只需将上述代码中的3改为k即可。文章来源地址https://www.toymoban.com/news/detail-696545.html

到了这里,关于动态规划之简单多状态的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【动态规划】简单多状态

    题目链接 状态表示 dp[i] 表示到i位置的时候预约的最大时长。但是这个题目我们可以选择接或不接。因此可以继续划分为两个子状态: f[i] 表示:到i位置时接受的最大时长 g[i] 表示:到i位置时不接受的最大时长 状态转移方程 初始化 因为这个题目比较简单,所以不需要使用

    2024年02月15日
    浏览(46)
  • 「动态规划」简单多状态dp问题

    以经典问题“打家劫舍”来解释简单多状态dp问题和解决方法 题目链接:打家劫舍I 这种问题就是在某一个位置有多个状态可以选择,选择 不同的状态 会影响 最终结果 在这道题中就是小偷在每一个房屋,可以选择偷或不偷,每一次选择都会影响最终偷窃金额 状态表示 因为

    2024年03月15日
    浏览(54)
  • c++--简单多状态动态规划问题

    PS:以下代码均为C++实现 1.按摩师  力扣 一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟

    2024年02月14日
    浏览(49)
  • 【动态规划】简单多状态dp问题(2)买卖股票问题

    买卖股票问题 传送门:力扣309. 最佳买卖股票时机含冷冻期 题目: 1.1 题目解析 越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗! 1.2 算法原理 1.2.1 状态表示 我们需要通过经

    2024年02月12日
    浏览(56)
  • 算法提高-动态规划-状态机模型

    这题比较简单,主要是学习一下状态机的模版(如何定义状态,dp方程如何推导)。 再学一个知识点:线性dp(i由i-1递推过来)可以用滚动数组优化空间复杂度 限制购买天数 这里也是线性dp,当然可以用滚动数组优化,但是之前大盗阿福写过了,这里就朴素版本了 限制了卖

    2024年02月15日
    浏览(59)
  • C++算法 —— 动态规划(3)多状态

    每一种算法都最好看完第一篇再去找要看的博客,因为这样会帮你梳理好思路,看接下来的博客也就更轻松了。当然,我也会尽量在写每一篇时都可以让不懂这个算法的人也能边看边理解。 动规的思路有五个步骤,且最好画图来理解细节,不要怕麻烦。当你开始画图,仔细阅

    2024年02月09日
    浏览(37)
  • 【动态规划】简单多状态dp问题(1)打家劫舍问题

    打家劫舍问题 传送门:面试题 17.16. 按摩师 题目: 1.1 题目解析 越难的dp问题,看示例只能起到了解题目的效果,一般推不出啥普遍的规律,所以接下来就是我们的算法原理,通过动归的思想去理解,才会豁然开朗! 1.2 算法原理 1.2.1 状态表示 我们需要通过经验 + 题目要求去

    2024年02月12日
    浏览(41)
  • 【动态规划专栏】专题三:简单多状态dp--------3.删除并获得点数

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年03月22日
    浏览(42)
  • 【状态压缩】【动态规划】【C++算法】691贴纸拼词

    视频算法专题 动态规划汇总 状态压缩 我们有 n 种不同的贴纸。每个贴纸上都有一个小写的英文单词。 您想要拼写出给定的字符串 target ,方法是从收集的贴纸中切割单个字母并重新排列它们。如果你愿意,你可以多次使用每个贴纸,每个贴纸的数量是无限的。 返回你需要拼

    2024年01月19日
    浏览(39)
  • 【算法 - 动态规划】原来写出动态规划如此简单!

    从本篇开始,我们就正式开始进入 动态规划 系列文章的学习。 本文先来练习两道通过 建立缓存表 优化解题过程的题目,对如何将 递归函数 修改成 动态规划 的流程有个基本的熟悉。 用最简单的想法完成题目要求的 递归 函数; 定义明确 递归函数 的功能!!! 分析是否存

    2024年02月21日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包