线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念

这篇具有很好参考价值的文章主要介绍了线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 什么是特征值和特征向量?

1.1 特征值和特征向量这2个概念先放后

1.2 直观定义

1.3 严格定义

2 如何求特征值和特征向量

2.1 方法1:结合图形看,直观方法求

2.1.1 单位矩阵的特征值和特征向量

2.1.2 旋转矩阵

2.2  根据严格定义的公式 A*X=λ*X 来求

2.3  特征方程

2.4 互异特征值对应的特征向量之间是线性无关的

3  对角化,普通矩阵对角化为对角矩阵


 2 

特征值,放大伸缩倍数

特征向量,旋转角度

 3.3  特征值和特征向量是什么?

直接说现在:特征向量这个块往哪个方向进行了拉伸,各个方向拉伸了几倍。这也让人很容易理解为什么,行列式的值就是特征值的乘积。

特征向量也代表了一些良好的性质,即这些线在线性变换后没有发生方向的偏移(可以逆转)只是长度发生了改变。

线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念,线性代数

1 什么是特征值和特征向量?

1.1 特征值和特征向量这2个概念先放后

特征值和特征向量这2个概念先放后

先搞清楚,为什么会有特征值和特征向量

1.2 直观定义

因为有的向量,经过线性组合(线性映射)后其还是共线(方向不变/或刚好相反),这时

这些没有发生变换的向量称为特征向量

变换前后的伸缩比例叫做特征值

配图

1.3 严格定义

假设A是n阶方阵,X为非零向量,如果存在λ 使得如下等式成立

A*X=λ*X

那么λ就是A的特征值,非零向量x是A的特征向量

2 如何求特征值和特征向量

2.1 方法1:结合图形看,直观方法求

2.1.1 单位矩阵的特征值和特征向量

I*X=X

因此单位矩阵特征值是1,特征向量是向量空间内的任意向量

2.1.2 旋转矩阵

$$
 \left[
 \begin{matrix}
   cos(θ) & -sin(θ) \\
   sin(θ) & cos(θ) \\
  \end{matrix}
  \right]
$$

旋转矩阵需要根据,具体的转动角度θ来确定

注意θ用弧度值不要用角度值

比如θ=Π/2  不共线

 θ=Π 还是共线,但是方向改变了,特征值-1 ,特征向量是所有向量?

因为任意向量来和旋转矩阵,都是刚好旋转这个弧度值

2.2  根据严格定义的公式 A*X=λ*X 来求

A*X=λ*X

A*X-λ*X=0

(A*-λ)*X=0

(A*-λ*I)*X=0

如果|A*-λ*I|≠0,那么(A*-λ*I)*X=0 只能是x=0,而x不能是零向量,因此|A*-λ*I|=0

联立方程组求解

|A*-λ*I|=0

(A*-λ*I)*X=0

|A*-λ*I|=0 → |1-λ,1 ;1 ,1-λ |=0  →  (1-λ)^2-1=0 

λ=0

λ=2

根据这个带入方程去求特征向量

2.3  特征方程

2.4 互异特征值对应的特征向量之间是线性无关的

3  对角化,普通矩阵对角化为对角矩阵

逆天 对角矩阵=[λ1,0 ; 0,λ2]

AP=P*Λ

APP-=P*Λ*P-

A=P*Λ* P-

如果P是正交矩阵,那么P-=Pt 而Pt 很好求

则A=P*Λ* Pt文章来源地址https://www.toymoban.com/news/detail-696877.html

到了这里,关于线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数|证明:矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月07日
    浏览(60)
  • 线性代数学习之特征值与特征向量

    在上一次线性代数学习之行列式学习了行列式相关的一些概念,其中也多次提到学好行列式是为了学习“特征值和特征向量”的基础,所以此次就正式进入这块内容的学习,也是线性代数中非常重要的概念,因为它又是线性代数其它重要概念的基石比如矩阵的相似性等等,当

    2024年02月11日
    浏览(55)
  • 线性代数基础【5】特征值和特征向量

    一、特征值和特征向量的理论背景 在一个多项式中,未知数的个数为任意多个,且每一项次数都是2的多项式称为二次型,二次型分为两种类型:即非标准二次型及标准二次型 注意: ①二次型X^T AX为非标准二次型的充分必要条件是A^T=A 但A为非对角矩阵;二次型 X^TAX为标准二次型的充

    2024年01月20日
    浏览(50)
  • 线性代数 第五章 特征值与特征向量

    一、特征值定义 二、特征值求法 定义法; ; 相似。 三、特征向量求法 定义法; 基础解系法; ; 相似。 四、特征值性质 不同特征值的特征向量线性无关 k重特征值至多有k个线性无关的特征向量 五、相似的定义 若,则A和B相似。 六、相似的性质(必要条件) 七、可对角

    2024年02月06日
    浏览(52)
  • 线性代数——特征值与特征向量的性质

    (1)设A为方阵,则A与 A T A^{T} A T 有相同的特征值。 此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。 (2): 设n阶方阵A=( a i j a_{ij} a ij ​ )的n个特征值为 λ 1 lambda_{1} λ 1 ​ , λ 2 lambda_{2} λ 2 ​ ,… λ n lambda_{n} λ n ​ ,则 λ 1 + λ

    2024年02月04日
    浏览(46)
  • 线性代数中矩阵的特征值与特征向量

    作者:禅与计算机程序设计艺术 在线性代数中,如果一个$ntimes n$的方阵$A$满足如下两个条件之一: $A$存在实数特征值,即$exists xneq 0:Ax=kx$,其中$kin mathbb{R}$; $lambda_{max}(A)neq 0$($lambda_{max}(A)$表示$A$的最大特征值),且$||x_{lambda_{max}(A)}||=sqrt{frac{lambda_{max}(A)}{lambda_{

    2024年02月08日
    浏览(53)
  • 线性代数---第五章特征值和特征向量

    当特征值是二重根时,有可能有一个线性无关的特征向量,也有可能有两个线性无关的特征向量

    2023年04月17日
    浏览(44)
  • 线性代数(8):特征值、特征向量和相似矩阵

            有矩阵 A 为 n 阶矩阵,Ax = λx ( λ 为一个实数,x为 n 维非零列向量 ),则称 λ 为方阵 A 的特征值, x 为特征向量; 1.2.1 公式         求特征值:使 | A - λE | = 0,其解的 λ 值即为矩阵 A 的特征值;         求特征向量: 使 ( A - λE )x = 0,设 x 为与 A 具有

    2024年02月11日
    浏览(51)
  • 线性代数中的特征值和特征向量

    现将下文需要运用到的一些概念进行解释说明以便读者更好理解 其中,我们要注意两点: (1)A是方阵(对于非方阵,是没有特征值的,但会有条件数)  (2)特征向量为非0列向量 我们再来看看两个相关定理  定理5.1说明了一个矩阵的几个特征向量线性无关 定义5.1的第一

    2024年02月01日
    浏览(48)
  • 线性代数(五) | 矩阵对角化 特征值 特征向量

    矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换 直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili 比如A= ( 1 2 2 1 ) begin{pmatrix}12\\\\21end{pmatrix} ( 1 2 ​ 2 1 ​ ) x= ( 1 2 ) begin{pmatrix}1\\\\2end{pmatrix} ( 1 2 ​ ) 我们给x左乘A实际

    2024年02月04日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包