Mysql--技术文档--B+树-数据结构的认知

这篇具有很好参考价值的文章主要介绍了Mysql--技术文档--B+树-数据结构的认知。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

阿丹解读:

之前的文章中写道了有关mysql底层索引,那么在数据量特别大的情况下。mysql采用了B+来管理索引。和存储的数据。

Mysql--技术文档--索引-《索引为什么查找数据快?》-超底层详细说明索引_一单成的博客-CSDN博客

B树解读:

Mysql--技术文档--B树-数据结构的认知_一单成的博客-CSDN博客

基本概念-B+树/B树

B树(B-tree)和B+树(B+ tree)是常见的自平衡搜索树数据结构,用于在存储和检索大量数据时提供高效的操作。它们具有一些共同的基本概念:

节点(Node):B树和B+树的数据存储在节点中。节点可以包含多个关键字和对应的指针。在B树中,叶子节点和内部节点的结构相同,都存储数据和关键字。而在B+树中,叶子节点只存储关键字和指向数据的指针,而内部节点存储关键字和指向子节点的指针。

关键字(Key):关键字是B树和B+树中用于对数据进行排序和搜索的值。关键字按照升序排列,并被存储在节点中。

指针(Pointer):指针用于连接节点,形成树的结构。在B树和B+树中,指针可以指向子节点、父节点或兄弟节点,实现树的平衡。

根节点(Root Node):根节点是B树和B+树的顶层节点。它是树的起点,通过根节点可以访问到整个树的结构。

叶节点(Leaf Node):叶节点是树的最底层节点。在B树中,叶节点存储数据和关键字。而在B+树中,叶节点只存储关键字和指向数据的指针。叶节点之间通过指针进行连接,形成一个有序的双向链表。

内部节点(Internal Node):内部节点是B树和B+树中非叶节点。它们用于指向子节点,并存储关键字。

B树和B+树作为自平衡的搜索树,具有增删改查的操作,每次操作后都会进行平衡以保持树的高度接近最小值。这样可以确保查询效率的稳定性,并提供高效的范围查询和区间搜索能力。

以上是B树和B+树的基本概念,它们在实际应用中有着广泛的应用,尤其在数据库和文件系统中用于管理和查找大量数据。

B+树

Mysql--技术文档--B+树-数据结构的认知,mysql,数据结构,mysql,b树

        B+树相对于B树主要有一个关键区别,那就是在每个子节点之间添加了指针。在B+树中,所有的数据记录都存储在叶子节点上,而非叶子节点只存储索引信息。每个非叶子节点都有指向其子节点的指针,形成一个链表结构,这个链表结构使得在范围查询时更加高效。而对于B树,非叶子节点既存储索引信息又存储部分数据记录。所以可以说B+树的设计更适合在数据库等需要范围查询的场景中使用。这种设计有效地减少了磁盘I/O操作的次数,提高了查询效率。

当谈到B+树和B树的区别时,以下是一些重要的方面需要考虑:

  1. 数据记录存储:在B树中,每个节点都包含索引和对应的数据记录。而在B+树中,只有叶子节点包含数据记录,而非叶子节点只包含索引信息。这使得B+树的叶子节点形成了一个有序链表,便于范围查询操作。

  2. 非叶子节点的指针:在B树中,非叶节点包含指向子节点的指针。而在B+树中,非叶子节点只包含指向子节点的指针,并且这些指针形成了一个链表结构。这样的设计可以更快地在范围查询时遍历数据。

  3. 查询性能:由于B+树的叶子节点上存储了较多的数据记录,并且有序排列,所以范围查询效率更高。而B树需要在非叶子节点和叶子节点之间来回检索,相对而言,范围查询的性能较差。

  4. 插入和删除操作:对于B+树来说,由于只需调整叶子节点的指针,所以插入和删除操作相对较快。而B树在插入和删除时可能需要在非叶子节点之间进行调整。

总体来说,B+树在数据库系统中更为常见,尤其在需要范围查询和排序的场景中非常适用。对于大型数据库,B+树的使用可以提供更高的性能和效率。而B树在一些特殊场景中可能仍然有其应用,但在绝大多数情况下,B+树是更好的选择。

B+树复杂度

B+树的复杂度取决于具体的操作,下面是一些常见操作的复杂度分析:

  1. 插入和删除:B+树的插入和删除操作通常具有O(log N)的时间复杂度,其中N是树中的节点数。插入和删除通常需要在树的高度上进行搜索,并且在找到合适的位置后,可能需要进行节点的分裂或合并操作。

  2. 查找:B+树的查找操作也具有O(log N)的时间复杂度。通过从根节点开始,根据索引值逐级搜索子节点,直到叶子节点找到目标记录。

  3. 范围查询:由于B+树的叶子节点形成有序链表,使得范围查询操作非常高效。通过定位范围的起始和结束位置,可以在O(log N + M)的时间复杂度内定位到范围内的M个记录。

注意:这些复杂度分析是对平衡的B+树而言。在实际使用中,性能可能受到硬件、存储引擎、数据分布和索引设计等多个因素的影响。因此,在特定情况下,可能需要进一步考虑这些因素以获得更准确的性能评估。

提供一个网址可手动看见树的工作流程

B-Tree Visualization

详解工作流程

  1. B+树的根节点是一个特殊的节点,存储在内存中,并且是树的入口点。根节点可以包含一些索引信息,指向下层节点。

  2. 当需要插入一条记录时,首先从根节点开始,按照索引值逐级向下搜索,找到合适的叶子节点。在叶子节点中,根据索引值的顺序将记录插入到合适的位置。

  3. 如果插入操作导致叶子节点超过了预设的容量,会进行节点的分裂操作。分裂会创建一个新的叶子节点,并将一部分记录移动到新节点中。同时,更新上层节点的索引信息以反映叶子节点的变化。

  4. 当需要删除一条记录时,同样从根节点开始搜索,找到包含目标记录的叶子节点,并将其删除。

  5. 如果删除操作导致叶子节点的记录数过少,会进行节点的合并操作。合并操作会将相邻的叶子节点合并为一个节点,并更新上层节点的索引信息。

  6. 在B+树中进行范围查询时,首先定位到起始位置和结束位置所在的叶子节点,然后按照链表结构遍历那些在范围内的叶子节点,找到满足条件的记录。

总之,B+树的工作流程是从根节点开始,按索引值逐级搜索,最终找到叶子节点来插入、删除或查询记录。在修改树的结构时,可能需要进行节点的分裂和合并操作,以保持树的平衡性。这种工作流程使得B+树在数据库中成为一种高效的索引结构,适用于大规模数据存储和高性能查询的场景。

相对于B树的升级点以及特性点

  1. 范围查询效率更高:B+树的叶子节点形成有序链表,使得范围查询操作更高效。通过链表结构,可以轻松地在范围内遍历叶子节点,从而实现更快速的范围查询。

  2. 只有叶子节点存储数据记录:在B+树中,只有叶子节点存储数据记录,而非叶子节点只存储索引信息。这种设计减少了冗余数据的存储,提高了数据存储的效率。

  3. 非叶子节点的指针:B+树的非叶子节点包含指向子节点的指针,并形成链表结构。这样的设计使得范围查询更高效,因为只需要在链表上遍历节点,而不需要返回到父节点进行下一步搜索。

  4. 插入和删除操作更高效:插入和删除操作只需要在叶子节点上进行操作,而不需要涉及到上层非叶子节点。这样可以减少操作的复杂性和开销,提高了插入和删除操作的效率。

  5. 有利于磁盘I/O的优化:B+树的有序链表结构有利于优化磁盘I/O操作。通过顺序读取叶子节点的数据记录,可以减少随机I/O的次数,提高磁盘访问的效率。

  6. 适用于大型数据库系统:由于B+树的优化特性,它更适用于大型数据库系统。B+树在处理大量数据和频繁查询时表现良好,具有更好的查询性能和数据存储效率。

总体而言,B+树相对于B树提供了更高效的范围查询、更高的插入和删除效率以及更好的存储效率。这使得B+树成为了许多数据库系统中常用的索引结构。

mysql中的B+树

在MySQL中,B+树被广泛应用于索引结构。B+树在数据库系统中解决了多个问题,并且成为了一种优秀的索引方案,这也是为什么它被使用的原因之一。

以下是MySQL中B+树的应用和解决的问题:

  1. 高效数据访问:B+树的有序链表结构和索引在叶子节点的使用,使得在数据库中高效地访问和查询数据成为可能。通过树的平衡和有序性,B+树的查询操作可以在最坏情况下以O(log N)的时间复杂度完成,这意味着即使对于大量数据,查询也可以很快完成。

  2. 范围查询优化:B+树的特性之一是叶子节点形成有序链表,这使得范围查询的执行非常高效。例如,对于给定的范围条件,可以直接定位到范围内的第一个叶子节点,并沿着链表顺序遍历到最后一个满足条件的叶子节点,从而减少了搜索的次数。

  3. 数据排序:B+树可以根据索引的有序性来对数据进行排序。当表使用B+树作为主键索引时,在插入新记录或更新现有记录时,B+树会自动维护有序性。

  4. 减少磁盘访问:B+树的有序链表结构和索引的使用有助于优化磁盘I/O操作。通过顺序读取叶子节点,可以减少磁盘随机I/O的次数,从而提高了查询性能。

  5. 支持快速插入和删除:B+树的插入和删除操作通常只需要操作叶子节点,不涉及上层非叶子节点。这减少了操作的复杂性和开销,提高了插入和删除操作的效率。

总的来说,MySQL中的B+树应用广泛,它解决了高效数据访问、范围查询优化、数据排序和减少磁盘访问等问题。使用B+树作为索引结构可以提供更好的查询性能、支持大型数据库系统,并且具备高效的数据插入和删除操作。文章来源地址https://www.toymoban.com/news/detail-696936.html

到了这里,关于Mysql--技术文档--B+树-数据结构的认知的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Mysql--技术文档--MVCC(Multi-Version Concurrency Control | 多版本并发控制)

            MVCC(Multi-Version Concurrency Control)是一种并发控制机制,用于解决并发访问数据库时的数据一致性和隔离性问题。MVCC允许多个事务同时读取数据库的同一数据,而不会相互干扰或导致冲突。         在传统的并发控制机制中,如锁定机制,事务会对读取和写入

    2024年02月11日
    浏览(37)
  • 智能文档图像处理技术:解决大数据时代文档图像处理难题

    智能文档图像处理技术是指利用计算机视觉和人工智能等技术对文档图像进行处理和分析,实现自动化识别、提取、分类和管理的技术。随着人工智能时代的到来和各行业信息化进程的加速,越来越多的个人和企业用户开始借助智能文档图像处理技术来提高工作效率,降低人

    2024年02月09日
    浏览(43)
  • 健身中心健身管理系统的设计与实现(源码+数据脚本+论文+技术文档)

    项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问题,今天给大家介绍一篇健身中心健身管理系统的

    2024年02月04日
    浏览(56)
  • Grafana技术文档--基本安装-docker安装并挂载数据卷-《十分钟搭建》

    阿丹: Prometheus技术文档--基本安装-docker安装并挂载数据卷-《十分钟搭建》_一单成的博客-CSDN博客         在正确安装了Prometheus之后开始使用并安装Grafana作为Prometheus的仪表盘。 搜索可拉取版本  拉取镜像       访问{ip}:3000 即可,使用账号密码 admin/admin进行登录即可 请按照

    2024年02月14日
    浏览(49)
  • Prometheus技术文档--基本安装-docker安装并挂载数据卷-《十分钟搭建》

    宿主机挂载目录位置: 以及准备对应的挂载目录: /usr/local/docker/promethues/server 准备如下: data、config、rules、ClientAll、server   授权相关文件夹权限  目标容器位置: /etc/prometheus/prometheus.yml 使用代码编辑配置文件: 书写如下配置:  解释配置: 这个 prometheus.yml 文件是Prome

    2024年02月14日
    浏览(50)
  • 【计算机网络 01】说在前面 信息服务 因特网 ISP RFC技术文档 边缘与核心 交换方式 定义与分类 网络性能指标 计算机网络体系结构 章节小结

    说在前面 本博客专栏都是基于B站上的湖科大计算机网络课程的课程笔记,主要是由于我发现无法从课程网站获得清晰PDF作为复习资料,所以制作此笔记同时也方便其他同学复习回顾,并且有少量补充参考 https://www.jianshu.com/u/5807cd8caf1d 同学的笔记 1.1 计算机网络 信息时代作用

    2024年02月16日
    浏览(50)
  • Flutter--常用技术文档

    配置 清华大学flutter镜像 export PUB_HOSTED_URL=https://mirrors.tuna.tsinghua.edu.cn/dart-pub export FLUTTER_STORAGE_BASE_URL=https://mirrors.tuna.tsinghua.edu.cn/flutter 社区镜象 export PUB_HOSTED_URL=https://pub.flutter-io.cn export FLUTTER_STORAGE_BASE_URL=https://storage.flutter-io.cn 混合开发 问题 解决 iOS、Flutter混合开发 ➜ Na

    2024年01月16日
    浏览(61)
  • Prometheus技术文档-概念

     Prometheus是一个开源的项目连接如下: Prometheus首页、文档和下载 - 服务监控系统 - OSCHINA - 中文开源技术交流社区           Prometheus是一个开源的系统监控和告警系统,由Google的BorgMon监控系统发展而来。它主要用于监控和度量各种时间序列数据,比如系统性能、网络延迟

    2024年02月14日
    浏览(48)
  • 云笔记技术文档

    定义实体 定义对数据库中User相关数据的操作 UserMapper.xml 定义了更新密码,通过ID寻找User,通过name寻找User,添加User操作 创建Dao层接口连接上述操作 在Service层进行具体的功能实现 在Service层,实现了修改密码,登录,注册功能 接口:UserService.java 实现:UserServicelmpl.java 在C

    2024年02月15日
    浏览(58)
  • 海康web插件技术文档

    前情提要:本技术文档基于我司石衡项目视频监控页面的应用进行总结。 石衡项目是基于vue2,使用Element-ui + 海康web插件 + Echarts + GIS的集成项目。 视频监控实现的主要功能: 路段中所有摄像头树状显示和检索 双击摄像头进行画面预览查看 预览模式和回放模式的切换

    2024年02月09日
    浏览(82)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包