自动驾驶道路曲率计算

这篇具有很好参考价值的文章主要介绍了自动驾驶道路曲率计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

自动驾驶系列

车道曲率和中心点偏离距离计算



目标

知道车道曲率计算的方法
知道计算中心点偏离距离的计算


一、曲率的介绍

曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。

圆的曲率

下面有三个球体,网球、篮球、地球,半径越小的越容易看出是圆的,所以随着半径的增加,圆的程度就越来越弱了。
道路曲率,自动驾驶,几何算法,自动驾驶,人工智能
定义球体或者圆的“圆”的程度,就是 曲率 ,计算方法为:
道路曲率,自动驾驶,几何算法,自动驾驶,人工智能

其中rr为球体或者圆的半径,这样半径越小的圆曲率越大,直线可以看作半径为无穷大的圆,其曲率为:
道路曲率,自动驾驶,几何算法,自动驾驶,人工智能

曲线的曲率

不同的曲线有不同的弯曲程度:
道路曲率,自动驾驶,几何算法,自动驾驶,人工智能怎么来表示某一条曲线的弯曲程度呢?

我们知道三点确定一个圆:
道路曲率,自动驾驶,几何算法,自动驾驶,人工智能
当δ 趋近于0时,我们可以的到曲线在x_0x​0​​处的密切圆,也就是曲线在该点的圆近似:

另,在曲线比较平坦的位置,密切圆较大,在曲线比较弯曲的地方,密切圆较小,

因此,我们通过密切圆的曲率来定义曲线的曲率,定义如下:

道路曲率,自动驾驶,几何算法,自动驾驶,人工智能

二、实现

1.计算曲率半径的方法,代码实现如下:

代码如下(示例):

def cal_radius(img, left_fit, right_fit):
 
    # 图像中像素个数与实际中距离的比率
    # 沿车行进的方向长度大概覆盖了30米,按照美国高速公路的标准,宽度为3.7米(经验值)
    ym_per_pix = 30 / 720  # y方向像素个数与距离的比例
    xm_per_pix = 3.7 / 700  # x方向像素个数与距离的比例
 
    # 计算得到曲线上的每个点
    left_y_axis = np.linspace(0, img.shape[0], img.shape[0] - 1)
    left_x_axis = left_fit[0] * left_y_axis ** 2 + left_fit[1] * left_y_axis + left_fit[2]
    right_y_axis = np.linspace(0, img.shape[0], img.shape[0] - 1)
    right_x_axis = right_fit[0] * right_y_axis ** 2 + right_fit[1] * right_y_axis + right_fit[2]
 
    # 获取真实环境中的曲线
    left_fit_cr = np.polyfit(left_y_axis * ym_per_pix, left_x_axis * xm_per_pix, 2)
    right_fit_cr = np.polyfit(right_y_axis * ym_per_pix, right_x_axis * xm_per_pix, 2)
 
    # 获得真实环境中的曲线曲率
    left_curverad = ((1 + (2 * left_fit_cr[0] * left_y_axis * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
        2 * left_fit_cr[0])
    right_curverad = ((1 + (
                2 * right_fit_cr[0] * right_y_axis * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
        2 * right_fit_cr[0])
 
    # 在图像上显示曲率
    cv2.putText(img, 'Radius of Curvature = {}(m)'.format(np.mean(left_curverad)), (20, 50), cv2.FONT_ITALIC, 1,
                (255, 255, 255), 5)
    return img

曲率半径显示效果:
道路曲率,自动驾驶,几何算法,自动驾驶,人工智能计算偏离中心的距离:

# 1. 定义函数计算图像的中心点位置
def cal_line__center(img):
    undistort_img = img_undistort(img, mtx, dist)
    rigin_pipline_img = pipeline(undistort_img)
    transform_img = img_perspect_transform(rigin_pipline_img, M)
    left_fit, right_fit = cal_line_param(transform_img)
    y_max = img.shape[0]
    left_x = left_fit[0] * y_max ** 2 + left_fit[1] * y_max + left_fit[2]
    right_x = right_fit[0] * y_max ** 2 + right_fit[1] * y_max + right_fit[2]
    return (left_x + right_x) / 2
 
# 2. 假设straight_lines2_line.jpg,这张图片是位于车道的中央,实际情况可以根据测量验证.
img =cv2.imread("./test/straight_lines2_line.jpg")
lane_center = cal_line__center(img)
print("车道的中心点为:{}".format(lane_center))
 
# 3. 计算偏离中心的距离
def cal_center_departure(img, left_fit, right_fit):
 
    # 计算中心点
    y_max = img.shape[0]
    left_x = left_fit[0] * y_max ** 2 + left_fit[1] * y_max + left_fit[2]
    right_x = right_fit[0] * y_max ** 2 + right_fit[1] * y_max + right_fit[2]
    xm_per_pix = 3.7 / 700
    center_depart = ((left_x + right_x) / 2 - lane_center) * xm_per_pix
 
    # 在图像上显示偏移
    if center_depart > 0:
        cv2.putText(img, 'Vehicle is {}m right of center'.format(center_depart), (20, 100), cv2.FONT_ITALIC, 1,
                    (255, 255, 255), 5)
    elif center_depart < 0:
        cv2.putText(img, 'Vehicle is {}m left of center'.format(-center_depart), (20, 100), cv2.FONT_ITALIC, 1,
                    (255, 255, 255), 5)
    else:
        cv2.putText(img, 'Vehicle is in the center', (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5)
    return img

计算偏离中心显示效果如下:
道路曲率,自动驾驶,几何算法,自动驾驶,人工智能

总结

曲率是表示曲线的弯曲程度,在这里是计算车道的弯曲程度
偏离中心的距离:利用已知的在中心的图像计算其他图像的偏离距离

# encoding:utf-8
 
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="/System/Library/Fonts/PingFang.ttc")
 
import cv2
import numpy as np
import matplotlib.pyplot as plt
#遍历文件夹
import glob
from moviepy.editor import VideoFileClip
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
 
 
 
"""参数设置"""
nx = 9
ny = 6
#获取棋盘格数据
file_paths = glob.glob("./camera_cal/calibration*.jpg")
 
# # 绘制对比图
# def plot_contrast_image(origin_img, converted_img, origin_img_title="origin_img", converted_img_title="converted_img",
#                         converted_img_gray=False):
#     fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 20))
#     ax1.set_title = origin_img_title
#     ax1.imshow(origin_img)
#     ax2.set_title = converted_img_title
#     if converted_img_gray == True:
#         ax2.imshow(converted_img, cmap="gray")
#     else:
#         ax2.imshow(converted_img)
#     plt.show()
 
#相机矫正使用opencv封装好的api
#目的:得到内参、外参、畸变系数
def cal_calibrate_params(file_paths):
    #存储角点数据的坐标
    object_points = [] #角点在真实三维空间的位置
    image_points = [] #角点在图像空间中的位置
    #生成角点在真实世界中的位置
    objp = np.zeros((nx*ny,3),np.float32)
    #以棋盘格作为坐标,每相邻的黑白棋的相差1
    objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1,2)
    #角点检测
    for file_path in file_paths:
        img = cv2.imread(file_path)
        #将图像灰度化
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        #角点检测
        rect,coners = cv2.findChessboardCorners(gray,(nx,ny),None)
 
        #若检测到角点,则进行保存 即得到了真实坐标和图像坐标
        if rect == True :
            object_points.append(objp)
            image_points.append(coners)
    # 相机较真
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, gray.shape[::-1], None, None)
    return ret, mtx, dist, rvecs, tvecs
 
# 图像去畸变:利用相机校正的内参,畸变系数
def img_undistort(img, mtx, dist):
    dis = cv2.undistort(img, mtx, dist, None, mtx)
    return dis
 
#车道线提取
#颜色空间转换--》边缘检测--》颜色阈值--》并且使用L通道进行白色的区域进行抑制
def pipeline(img,s_thresh = (170,255),sx_thresh=(40,200)):
    # 复制原图像
    img = np.copy(img)
    # 颜色空间转换
    hls = cv2.cvtColor(img,cv2.COLOR_RGB2HLS).astype(np.float)
    l_chanel = hls[:,:,1]
    s_chanel = hls[:,:,2]
    #sobel边缘检测
    sobelx = cv2.Sobel(l_chanel,cv2.CV_64F,1,0)
    #求绝对值
    abs_sobelx = np.absolute(sobelx)
    #将其转换为8bit的整数
    scaled_sobel = np.uint8(255 * abs_sobelx / np.max(abs_sobelx))
    #对边缘提取的结果进行二值化
    sxbinary = np.zeros_like(scaled_sobel)
    #边缘位置赋值为1,非边缘位置赋值为0
    sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1
 
    #对S通道进行阈值处理
    s_binary = np.zeros_like(s_chanel)
    s_binary[(s_chanel >= s_thresh[0]) & (s_chanel <= s_thresh[1])] = 1
 
    # 结合边缘提取结果和颜色通道的结果,
    color_binary = np.zeros_like(sxbinary)
    color_binary[((sxbinary == 1) | (s_binary == 1)) & (l_chanel > 100)] = 1
    return color_binary
 
#透视变换-->将检测结果转换为俯视图。
#获取透视变换的参数矩阵【二值图的四个点】
def cal_perspective_params(img,points):
    # x与y方向上的偏移
    offset_x = 330
    offset_y = 0
    #转换之后img的大小
    img_size = (img.shape[1],img.shape[0])
    src = np.float32(points)
    #设置俯视图中的对应的四个点 左上角 右上角 左下角 右下角
    dst = np.float32([[offset_x, offset_y], [img_size[0] - offset_x, offset_y],
                      [offset_x, img_size[1] - offset_y], [img_size[0] - offset_x, img_size[1] - offset_y]])
    ## 原图像转换到俯视图
    M = cv2.getPerspectiveTransform(src, dst)
    # 俯视图到原图像
    M_inverse = cv2.getPerspectiveTransform(dst, src)
    return M, M_inverse
 
#根据透视变化矩阵完成透视变换
def img_perspect_transform(img,M):
    #获取图像大小
    img_size = (img.shape[1],img.shape[0])
    #完成图像的透视变化
    return cv2.warpPerspective(img,M,img_size)
 
# 精确定位车道线
#传入已经经过边缘检测的图像阈值结果的二值图,再进行透明变换
def cal_line_param(binary_warped):
    #定位车道线的大致位置==计算直方图
    histogram = np.sum(binary_warped[:,:],axis=0) #计算y轴
    # 将直方图一分为二,分别进行左右车道线的定位
    midpoint = np.int(histogram.shape[0]/2)
    #分别统计左右车道的最大值
    midpoint = np.int(histogram.shape[0] / 2)
    leftx_base = np.argmax(histogram[:midpoint]) #左车道
    rightx_base = np.argmax(histogram[midpoint:]) + midpoint #右车道
    #设置滑动窗口
    #对每一个车道线来说 滑动窗口的个数
    nwindows = 9
    #设置滑动窗口的高
    window_height = np.int(binary_warped.shape[0]/nwindows)
    #设置滑动窗口的宽度==x的检测范围,即滑动窗口的一半
    margin = 100
    #统计图像中非0点的个数
    nonzero = binary_warped.nonzero()
    nonzeroy = np.array(nonzero[0])#非0点的位置-x坐标序列
    nonzerox = np.array(nonzero[1])#非0点的位置-y坐标序列
    #车道检测位置
    leftx_current = leftx_base
    rightx_current = rightx_base
    #设置阈值:表示当前滑动窗口中的非0点的个数
    minpix = 50
    #记录窗口中,非0点的索引
    left_lane_inds = []
    right_lane_inds = []
 
    #遍历滑动窗口
    for window in range(nwindows):
        # 设置窗口的y的检测范围,因为图像是(行列),shape[0]表示y方向的结果,上面是0
        win_y_low = binary_warped.shape[0] - (window + 1) * window_height #y的最低点
        win_y_high = binary_warped.shape[0] - window * window_height #y的最高点
        # 左车道x的范围
        win_xleft_low = leftx_current - margin
        win_xleft_high = leftx_current + margin
        # 右车道x的范围
        win_xright_low = rightx_current - margin
        win_xright_high = rightx_current + margin
 
        # 确定非零点的位置x,y是否在搜索窗口中,将在搜索窗口内的x,y的索引存入left_lane_inds和right_lane_inds中
        good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
                          (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
        good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
                           (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
        left_lane_inds.append(good_left_inds)
        right_lane_inds.append(good_right_inds)
 
        # 如果获取的点的个数大于最小个数,则利用其更新滑动窗口在x轴的位置=修正车道线的位置
        if len(good_left_inds) > minpix:
            leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
        if len(good_right_inds) > minpix:
            rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
 
    # 将检测出的左右车道点转换为array
    left_lane_inds = np.concatenate(left_lane_inds)
    right_lane_inds = np.concatenate(right_lane_inds)
 
    # 获取检测出的左右车道x与y点在图像中的位置
    leftx = nonzerox[left_lane_inds]
    lefty = nonzeroy[left_lane_inds]
    rightx = nonzerox[right_lane_inds]
    righty = nonzeroy[right_lane_inds]
 
    # 3.用曲线拟合检测出的点,二次多项式拟合,返回的结果是系数
    left_fit = np.polyfit(lefty, leftx, 2)
    right_fit = np.polyfit(righty, rightx, 2)
    return left_fit, right_fit
 
#填充车道线之间的多边形
def fill_lane_poly(img,left_fit,right_fit):
    #行数
    y_max = img.shape[0]
    #设置填充之后的图像的大小 取到0-255之间
    out_img = np.dstack((img,img,img))*255
    #根据拟合结果,获取拟合曲线的车道线像素位置
    left_points = [[left_fit[0] * y ** 2 + left_fit[1] * y + left_fit[2], y] for y in range(y_max)]
    right_points = [[right_fit[0] * y ** 2 + right_fit[1] * y + right_fit[2], y] for y in range(y_max - 1, -1, -1)]
    # 将左右车道的像素点进行合并
    line_points = np.vstack((left_points, right_points))
    # 根据左右车道线的像素位置绘制多边形
    cv2.fillPoly(out_img, np.int_([line_points]), (0, 255, 0))
    return out_img
 
#计算车道线曲率的方法
def cal_readius(img,left_fit,right_fit):
    # 比例
    ym_per_pix = 30/720
    xm_per_pix = 3.7/700
    # 得到车道线上的每个点
    left_y_axis = np.linspace(0,img.shape[0],img.shape[0]-1) #个数img.shape[0]-1
    left_x_axis = left_fit[0]*left_y_axis**2+left_fit[1]*left_y_axis+left_fit[0]
    right_y_axis = np.linspace(0,img.shape[0],img.shape[0]-1)
    right_x_axis = right_fit[0]*right_y_axis**2+right_fit[1]*right_y_axis+right_fit[2]
 
    # 把曲线中的点映射真实世界,再计算曲率
    left_fit_cr = np.polyfit(left_y_axis*ym_per_pix,left_x_axis*xm_per_pix,2)
    right_fit_cr = np.polyfit(right_y_axis*ym_per_pix,right_x_axis*xm_per_pix,2)
 
    # 计算曲率
    left_curverad = ((1+(2*left_fit_cr[0]*left_y_axis*ym_per_pix+left_fit_cr[1])**2)**1.5)/np.absolute(2*left_fit_cr[0])
    right_curverad = ((1+(2*right_fit_cr[0]*right_y_axis*ym_per_pix *right_fit_cr[1])**2)**1.5)/np.absolute((2*right_fit_cr[0]))
 
    # 将曲率半径渲染在图像上 写什么
    cv2.putText(img,'Radius of Curvature = {}(m)'.format(np.mean(left_curverad)),(20,50),cv2.FONT_ITALIC,1,(255,255,255),5)
    return img
 
# 计算车道线中心的位置
def cal_line_center(img):
    #去畸变
    undistort_img = img_undistort(img,mtx,dist)
    #提取车道线
    rigin_pipeline_img = pipeline(undistort_img)
    #透视变换
    trasform_img = img_perspect_transform(rigin_pipeline_img,M)
    #精确定位
    left_fit,right_fit = cal_line_param(trasform_img)
    #当前图像的shape[0]
    y_max = img.shape[0]
    #左车道线
    left_x = left_fit[0]*y_max**2+left_fit[1]*y_max+left_fit[2]
    #右车道线
    right_x = right_fit[0]*y_max**2+right_fit[1]*y_max+right_fit[2]
    #返回车道中心点
    return (left_x+right_x)/2
 
def cal_center_departure(img,left_fit,right_fit):
    # 计算中心点
    y_max = img.shape[0]
    left_x = left_fit[0]*y_max**2 + left_fit[1]*y_max +left_fit[2]
    right_x = right_fit[0]*y_max**2 +right_fit[1]*y_max +right_fit[2]
    xm_per_pix = 3.7/700
    center_depart = ((left_x+right_x)/2-lane_center)*xm_per_pix
    # 渲染
    if center_depart>0:
        cv2.putText(img,'Vehicle is {}m right of center'.format(center_depart), (20, 100), cv2.FONT_ITALIC, 1,
                    (255, 255, 255), 5)
    elif center_depart<0:
        cv2.putText(img, 'Vehicle is {}m left of center'.format(-center_depart), (20, 100), cv2.FONT_ITALIC, 1,
                    (255, 255, 255), 5)
    else:
        cv2.putText(img, 'Vehicle is in the center', (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5)
    return img
 
#计算车辆偏离中心点的距离
def cal_center_departure(img,left_fit,right_fit):
    # 计算中心点
    y_max = img.shape[0]
    #左车道线
    left_x = left_fit[0]*y_max**2 + left_fit[1]*y_max +left_fit[2]
    #右车道线
    right_x = right_fit[0]*y_max**2 +right_fit[1]*y_max +right_fit[2]
    #x方向上每个像素点代表的距离大小
    xm_per_pix = 3.7/700
    #计算偏移距离 像素距离 × xm_per_pix = 实际距离
    center_depart = ((left_x+right_x)/2-lane_center)*xm_per_pix
    # 渲染
    if center_depart>0:
        cv2.putText(img,'Vehicle is {}m right of center'.format(center_depart), (20, 100), cv2.FONT_ITALIC, 1,
                    (255, 255, 255), 5)
    elif center_depart<0:
        cv2.putText(img, 'Vehicle is {}m left of center'.format(-center_depart), (20, 100), cv2.FONT_ITALIC, 1,
                    (255, 255, 255), 5)
    else:
        cv2.putText(img, 'Vehicle is in the center', (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5)
    return img
 
if __name__ == "__main__":
    ret, mtx, dist, rvecs, tvecs = cal_calibrate_params(file_paths)
    #透视变换
    #获取原图的四个点
    img = cv2.imread('./test/straight_lines2.jpg')
    points = [[601, 448], [683, 448], [230, 717], [1097, 717]]
    #将四个点绘制到图像上 (文件,坐标起点,坐标终点,颜色,连接起来)
    img = cv2.line(img, (601, 448), (683, 448), (0, 0, 255), 3)
    img = cv2.line(img, (683, 448), (1097, 717), (0, 0, 255), 3)
    img = cv2.line(img, (1097, 717), (230, 717), (0, 0, 255), 3)
    img = cv2.line(img, (230, 717), (601, 448), (0, 0, 255), 3)
 
    #透视变换的矩阵
    M,M_inverse = cal_perspective_params(img,points)
    #计算车道线的中心距离
    lane_center = cal_line_center(img)

参考文档文章来源地址https://www.toymoban.com/news/detail-697155.html

到了这里,关于自动驾驶道路曲率计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 9.1.tensorRT高级(4)封装系列-自动驾驶案例项目self-driving-道路分割分析

    杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。 本次课程学习 tensorRT 高级-自动驾驶案例项目self-driving-道路分割分析 课程大纲可看下面的思维导图 这节我们学习自动驾驶场景中的模型案

    2024年02月10日
    浏览(44)
  • 自动驾驶技术:人工智能驾驶的未来

    自动驾驶技术是一种利用计算机视觉、机器学习、人工智能等技术,以实现汽车在无人干预的情况下自主行驶的技术。自动驾驶技术的发展将重塑汽车行业,为人类带来更安全、高效、舒适的交通体系。 自动驾驶技术的主要组成部分包括: 传感器系统:负责获取车辆周围的

    2024年02月20日
    浏览(87)
  • 走进人工智能|自动驾驶 迈向无人驾驶未来

    前言: 自动驾驶是一种技术,通过使用传感器、人工智能和算法来使车辆能够在不需要人类干预的情况下自主地感知、决策和操作。 本篇带你走进自动化驾驶!一起来学习了解吧!!! 随着科技的不断进步,自动驾驶已经成为当今社会最炙手可热的话题之一。它引领着我们

    2024年02月11日
    浏览(62)
  • 【毕业设计】基于深度学习的道路裂缝识别算法系统 python 卷积神经网络 人工智能

    目录  前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 卷积神经网络 2.1 YOLOv5算法 三、道路裂缝检测的实现 3.1 数据集 3.2 实验环境及参数设置  3.2 实验及结果分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后

    2024年03月24日
    浏览(86)
  • 自动驾驶软件和人工智能

    自动驾驶汽车的核心在于其软件系统,而其中的机器学习和深度学习技术是使车辆能够感知、理解、决策和行动的关键。本文将深入探讨这些技术在自动驾驶中的应用,包括感知、定位、路径规划以及道路标志和交通信号的识别。 机器学习和深度学习在自动驾驶中的应用是实

    2024年02月07日
    浏览(61)
  • 如何使用RPA自动化人工智能和自动驾驶汽车

    人工智能和自动驾驶汽车是当今科技领域的热门话题。在这篇文章中,我们将探讨如何使用RPA(Robotic Process Automation)自动化人工智能和自动驾驶汽车。 RPA是一种自动化软件技术,它可以自动完成人类工作,提高工作效率。在人工智能和自动驾驶汽车领域,RPA可以帮助我们自动

    2024年02月20日
    浏览(73)
  • 走进人工智能|自动驾驶 开启智能出行新时代

    自动驾驶,也被称为无人驾驶或自动驾驶汽车,是指能够在没有人类干预的情况下自主地感知环境、决策和控制车辆行驶的技术和系统。 自动驾驶汽车是一种通过电脑系统实现无人驾驶的智能汽车。这种车辆依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作

    2024年02月14日
    浏览(53)
  • 人工智能与自动驾驶:智能出行时代的未来之路

           首先,我们先来说下什么是人工智能, 人工智能 (Artificial Intelligence,简称AI)是一门研究如何使计算机系统能够模拟、仿真人类智能的技术和科学领域。它涉及构建智能代理,使其能够感知环境、理解和学习知识,以及通过推理、决策和问题解决等方式与环境进行

    2024年02月03日
    浏览(73)
  • 【AI赋能】人工智能在自动驾驶时代的应用

    引言 人工智能引领现代,智能AI赋能未来。 它在当今社会和科技领域中具有重要性。 本文将着重探讨人工智能对自动驾驶技术的深度赋能和应用场景等。 有时我们乘坐网约车的时候,能打到无人驾驶汽车,全程均为AI语音播报: 自动驾驶是指通过使用 各种传感器 、 计算机

    2024年02月17日
    浏览(67)
  • 深度学习之路:自动驾驶沙盘与人工智能专业的完美融合

    引言: 在数字化时代,深度学习如一颗耀眼的明星,将人工智能推向新的高峰。本文将深度剖析自动驾驶沙盘与人工智能专业的紧密结合,旨在揭示这一融合对于中职和高职类人工智能专业的学子们的巨大意义。通过以图像识别技术为入口,我们将探讨自动驾驶沙盘在培养学

    2024年02月04日
    浏览(68)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包