Fine-tuning Large Enterprise Language Models via Ontological Reasoning

这篇具有很好参考价值的文章主要介绍了Fine-tuning Large Enterprise Language Models via Ontological Reasoning。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文是LLM系列文章,针对《Fine-tuning Large Enterprise Language Models via Ontological Reasoning》的翻译。

摘要

大型语言模型(LLM)利用特定任务的训练数据,将微调作为一种适应不同目标的技术。任务特异性应该与领域定向齐头并进,即LLM的专业化,以准确地处理给定感兴趣领域的任务。然而,模型通常是根据公开可用的数据进行微调的,或者最多是根据数据库中的真实数据进行微调,而忽略了业务级别的定义和领域经验。另一方面,企业知识图谱(EKG)能够通过本体论推理来捕获和增强这些领域知识。为了将LLM的灵活性与EKG的领域定向相结合,我们提出了一种新的神经符号体系结构,该体系结构利用本体论推理的力量来构建用于LLM微调的任务和领域特定语料库。

1 引言

2 微调LLM的神经符号管道

3 通过概念证明进行初步验证

4 结论

根据计算语言学协会欧洲分会最近发表的一项工作,预先训练的语言模型还不能进行演绎推理:它们仍然不能概括逻辑规则,即使提供了规则,LLM也倾向于忘记以前推断的事实。虽然Transformer架构和推理方法之间还没有进行广泛的比较,但我们的工作表明,通过产生微调语料库作为本体论推理的副产品,可以明显提高领域特定NLP任务的LLM性能。我们利用我们在演绎推理方面的经验,为在企业知识图谱上进行推理的神经符号平台迈出了第一步。文章来源地址https://www.toymoban.com/news/detail-697353.html

到了这里,关于Fine-tuning Large Enterprise Language Models via Ontological Reasoning的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LLMs 缩放指令模型Scaling instruct models FLAN(Fine-tuned LAnguage Net,微调语言网络)

    本论文介绍了FLAN(Fine-tuned LAnguage Net,微调语言网络),一种指导微调方法,并展示了其应用结果。该研究证明,通过在1836个任务上微调540B PaLM模型,同时整合Chain-of-Thought Reasoning(思维链推理)数据,FLAN在泛化、人类可用性和零射推理方面相对于基础模型取得了改进。论文

    2024年02月11日
    浏览(34)
  • 【论文精读】GPT-NER: Named Entity Recognition via Large Language Models

    一篇2023年4月26日才挂上arxiv的文章,是我看到的第一篇用LLM解决NER任务的文章,在我看来,LLM才是NER问题的最优解,尤其是小样本场景,具有丰富先验知识的LLM,其涌现能力总能让我叹为观止。 LLM在NER上的表现低于基线,这是因为二者任务不同,前者是文本生成任务,后者是

    2024年02月02日
    浏览(109)
  • Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement

    文章链接 核心思想是通过instruction让LLM来优化问题本身,从而达到更好的效果,且这种针对问题的优化可以跟其他的prompt技术,如CoT或者Least-to-Most相结合。 作者提出了一些重述问题的准则: (1)简短:问题不要太长,确保容易理解 (2)清晰:问题表述清晰,能量化的部分

    2024年02月08日
    浏览(37)
  • chatgpt fine-tuning 官方文档

    Learn how to customize a model for your application. This guide is intended for users of the new OpenAI fine-tuning API. If you are a legacy fine-tuning user, please refer to our legacy fine-tuning guide. Fine-tuning lets you get more out of the models available through the API by providing: Higher quality results than prompting Ability to train on more exa

    2024年02月09日
    浏览(37)
  • ChatGPT的Fine-tuning是什么?

    fine-tuning基本概念 Fine-tuning(微调)是指在预训练过的模型基础上,使用特定任务的数据进行进一步的训练,以使模型更好地适应该任务。在ChatGPT的情况下,Fine-tuning是指在预训练的语言模型上使用对话数据进行进一步的训练,以使模型能够更好地生成对话响应。 GPT微调的一

    2024年02月12日
    浏览(46)
  • 小白理解GPT的“微调“(fine-tuning)

    对于GPT-3.5,我们实际上并不能在OpenAI的服务器上直接训练它。OpenAI的模型通常是预训练好的,也就是说,它们已经在大量的语料上进行过训练,学习到了语言的基本规则和模式。 然而,OpenAI提供了一种叫做\\\"微调\\\"(fine-tuning)的方法,让我们可以在预训练好的模型基础上进行

    2024年02月04日
    浏览(45)
  • Fine-tuning:个性化AI的妙术

    一、什么是大模型 ChatGPT大模型今年可谓是大火,在正式介绍大模型微调技术之前,为了方便大家理解,我们先对大模型做一个直观的抽象。 本质上,现在的大模型要解决的问题,就是一个序列数据转换的问题: 输入序列 X = [x1, x2, ..., xm], 输出序列Y = [y1, y2, …, yn],X和Y之

    2024年01月17日
    浏览(51)
  • 对 ChatGLM-6B 做 LoRA Fine-tuning

    ChatGLM-6B 是一个支持中英双语的对话语言模型,基于 GLM (General Language Model)。它只有 62 亿个参数,量化后最低 (INT4 量化) 只需要 6GB 的显存,完全可以部署到消费级显卡上。在实际使用这个模型一段时间以后,我们发现模型的对话表现能力确实非常不错。那么,基于这个模型做

    2023年04月25日
    浏览(33)
  • 一分钟搞懂 微调(fine-tuning)和prompt

    大家都是希望让预训练语言模型和下游任务靠的更近,只是实现的方式不一样。Fine-tuning中:是预训练语言模型“迁就“各种下游任务;Prompting中,是各种下游任务“迁就“预训练语言模型。 微调(fine-tuning)和prompt是自然语言处理领域中常用的两个术语,它们都是指训练和

    2023年04月26日
    浏览(50)
  • ChatGPT进阶:利用Fine-tuning训练自己的模型

    ChatGPT是“大力出奇迹”的经典表现,大模型给ChatGPT带来了惊人的智能,但是要训练这样的大模型,可是十分烧钱的,根据OpenAI给出的数据,1700亿参数的Davinci模型从头训练一遍,大概需要耗时3个月,耗资150万美元。那我们普通人或者小公司面对这个高门槛,对自定义模型是

    2024年02月17日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包