深入探讨梯度下降:优化机器学习的关键步骤(二)

这篇具有很好参考价值的文章主要介绍了深入探讨梯度下降:优化机器学习的关键步骤(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🍀引言

承接上篇,这篇主要有两个重点,一个是eta参数的调解;一个是在sklearn中实现梯度下降

在梯度下降算法中,学习率(通常用符号η表示,也称为步长或学习速率)的选择非常重要,因为它直接影响了算法的性能和收敛速度。学习率控制了每次迭代中模型参数更新的幅度。以下是学习率(η)的重要性:

  • 收敛速度:学习率决定了模型在每次迭代中移动多远。如果学习率过大,模型可能会在参数空间中来回摇摆,导致不稳定的收敛或甚至发散。如果学习率过小,模型将收敛得很慢,需要更多的迭代次数才能达到最优解。因此,选择合适的学习率可以加速收敛速度。

  • 稳定性:过大的学习率可能会导致梯度下降算法不稳定,甚至无法收敛。过小的学习率可以使算法更加稳定,但可能需要更多的迭代次数才能达到最优解。因此,合适的学习率可以在稳定性和收敛速度之间取得平衡。

  • 避免局部最小值:选择不同的学习率可能会导致模型陷入不同的局部最小值。通过尝试不同的学习率,您可以更有可能找到全局最小值,而不是被困在局部最小值中。

  • 调优:学习率通常需要调优。您可以尝试不同的学习率值,并监视损失函数的收敛情况。通常,您可以使用学习率衰减策略,逐渐降低学习率以改善收敛性能。

  • 批量大小:学习率的选择也与批量大小有关。通常,小批量梯度下降(Mini-batch Gradient Descent)使用比大批量梯度下降更大的学习率,因为小批量可以提供更稳定的梯度估计。

总之,学习率是梯度下降算法中的关键超参数之一,它需要仔细选择和调整,以在训练过程中实现最佳性能和收敛性。不同的问题和数据集可能需要不同的学习率,因此在实践中,通常需要进行实验和调优来找到最佳的学习率值。


🍀eta参数的调节

在上代码前我们需要知道,如果eta的值过小会造成什么样的结果

深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法
反之如果过大呢

深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法
可见,eta过大过小都会影响效率,所以一个合适的eta对于寻找最优有着至关重要的作用


在上篇的学习中我们已经初步完成的代码,这篇我们将其封装一下
首先需要定义两个函数,一个用来返回thera的历史列表,一个则将其绘制出来

def gradient_descent(eta,initial_theta,epsilon = 1e-8):
    theta = initial_theta
    theta_history = [initial_theta]
    def dj(theta): 
        return 2*(theta-2.5) #  传入theta,求theta点对应的导数
    def j(theta):
        return (theta-2.5)**2-1  #  传入theta,获得目标函数的对应值
    while True:
        gradient = dj(theta)
        last_theta = theta
        theta = theta-gradient*eta 
        theta_history.append(theta)
        if np.abs(j(theta)-j(last_theta))<epsilon:
            break
    return theta_history

def plot_gradient(theta_history):
    plt.plot(plt_x,plt_y)
    plt.plot(theta_history,[(i-2.5)**2-1 for i in theta_history],color='r',marker='+')
    plt.show()

其实就是上篇代码的整合罢了
之后我们需要进行简单的调参了,这里我们分别采用0.10.010.9,这三个参数进行调节

eta = 0.1
theta =0.0
plot_gradient(gradient_descent(eta,theta))
len(theta_history)

运行结果如下
深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法

eta = 0.01
theta =0.0
plot_gradient(gradient_descent(eta,theta))
len(theta_history)

运行结果如下
深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法

eta = 0.9
theta =0.0
plot_gradient(gradient_descent(eta,theta))
len(theta_history)

运行结果如下
深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法
这三张图与之前的提示很像吧,可见调参的重要性
如果我们将eta改为1.0呢,那么会发生什么

eta = 1.0
theta =0.0
plot_gradient(gradient_descent(eta,theta))
len(theta_history)

运行结果如下
深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法
那改为1.1呢

eta = 1.1
theta =0.0
plot_gradient(gradient_descent(eta,theta))
len(theta_history)

运行结果如下
深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法
我们从图可以清楚的看到,当eta为1.1的时候是嗷嗷增大的,这种情况我们需要采用异常处理来限制一下,避免报错,处理的方式是限制循环的最大值,且可以在expect中设置inf(正无穷)

def gradient_descent(eta,initial_theta,n_iters=1e3,epsilon = 1e-8):
    theta = initial_theta
    theta_history = [initial_theta]
    i_iter = 1
    def dj(theta):  
        try:
            return 2*(theta-2.5) #  传入theta,求theta点对应的导数
        except:
            return float('inf')
    def j(theta):
        return (theta-2.5)**2-1  #  传入theta,获得目标函数的对应值
    while i_iter<=n_iters:
        gradient = dj(theta)
        last_theta = theta
        theta = theta-gradient*eta 
        theta_history.append(theta)
        if np.abs(j(theta)-j(last_theta))<epsilon:
            break
        i_iter+=1
    return theta_history

def plot_gradient(theta_history):
    plt.plot(plt_x,plt_y)
    plt.plot(theta_history,[(i-2.5)**2-1 for i in theta_history],color='r',marker='+')
    plt.show()

注意:inf表示正无穷大


🍀sklearn中的梯度下降

这里我们还是以波士顿房价为例子
首先导入需要的库

from sklearn.datasets import load_boston
from sklearn.linear_model import SGDRegressor

之后取一部分的数据

boston = load_boston()
X = boston.data
y = boston.target
X = X[y<50]
y = y[y<50]

然后进行数据归一化

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y)
std = StandardScaler()
std.fit(X_train)
X_train_std=std.transform(X_train)
X_test_std=std.transform(X_test)
sgd_reg = SGDRegressor()
sgd_reg.fit(X_train_std,y_train)

最后取得score

sgd_reg.score(X_test_std,y_test)

运行结果如下
深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法


深入探讨梯度下降:优化机器学习的关键步骤(二),机器学习,机器学习,人工智能,算法

挑战与创造都是很痛苦的,但是很充实。文章来源地址https://www.toymoban.com/news/detail-697478.html

到了这里,关于深入探讨梯度下降:优化机器学习的关键步骤(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习笔记值优化算法(十四)梯度下降法在凸函数上的收敛性

    本节将介绍 梯度下降法 在 凸函数 上的收敛性。 收敛速度:次线性收敛 关于 次线性收敛 ,分为两种 判别 类型: R mathcal R R -次线性收敛与 Q mathcal Q Q -次线性收敛。而次线性收敛的 特点 是: 随着迭代次数的增加,相邻迭代步骤产生的目标函数结果 f ( x k ) , f ( x k + 1 ) f

    2024年02月13日
    浏览(50)
  • 机器学习笔记之优化算法(十七)梯度下降法在强凸函数的收敛性分析

    上一节介绍并证明了: 梯度下降法 在 强凸函数 上的收敛速度满足 Q mathcal Q Q -线性收敛 。 本节将介绍:在 更强 的条件下:函数 f ( ⋅ ) f(cdot) f ( ⋅ ) 在其定义域内 二阶可微 , 梯度下降法 在 f ( ⋅ ) f(cdot) f ( ⋅ ) 上的收敛速度存在什么样的结论。 关于 梯度下降法 在

    2024年02月12日
    浏览(49)
  • 机器学习笔记之优化算法(十六)梯度下降法在强凸函数上的收敛性证明

    本节将介绍: 梯度下降法 在 强凸函数 上的收敛性,以及 证明过程 。 凸函数与强凸函数 关于 凸函数 的定义使用 数学符号 表示如下: ∀ x 1 , x 2 ∈ R n , ∀ λ ∈ ( 0 , 1 ) ⇒ f [ λ ⋅ x 2 + ( 1 − λ ) ⋅ x 1 ] ≤ λ ⋅ f ( x 2 ) + ( 1 − λ ) ⋅ f ( x 1 ) forall x_1,x_2 in mathbb R^n, forall

    2024年02月11日
    浏览(41)
  • 机器学习——梯度下降法

    问:梯度下降法一定能求得最小值??? 答: 在某些情况下,梯度下降法可以找到函数的最小值,但并非总是如此。这取决于函数的形状和梯度下降法的参数设置。如果函数具有多个局部最小值,梯度下降法可能会收敛到其中一个局部最小值,而不是全局最小值。此外,如

    2023年04月08日
    浏览(41)
  • 机器学习梯度下降法笔记

    梯度下降法(Gradient Descent)是一种常用的优化算法,用于在机器学习和深度学习中最小化或最大化一个函数的值。在机器学习中,梯度下降法常用于调整模型的参数,使得模型能够更好地拟合训练数据。 这个优化算法的基本思想是通过迭代的方式,不断调整参数的值,使得

    2024年02月15日
    浏览(41)
  • 机器学习——线性回归、梯度下降

    监督学习 :学习数据带有标签 无监督学习 :没有任何的标签,或者有相同的标签 其他:强化学习、推荐系统等 还是房价预测的例子, 训练集如下: 定义各个变量的含义如下: m——代表训练集中实例的数量 x——代表特征/输入变量 y——代表目标变量/输出变量 (x,y)——代

    2024年02月07日
    浏览(48)
  • 机器学习_梯度下降

    计算梯度向量其几何意义,就是函数变化的方向,而且是变化最快的方向。对于函数f(x),在点(xo,yo),梯度向量的方向也就是y值增加最快的方向。也就是说,沿着梯度向量的方向 △f(xo),能找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -△f(xo)的方向,梯度

    2024年01月19日
    浏览(45)
  • 梯度下降与机器学习的关系

    梯度下降是一种优化算法,常用于机器学习中的参数优化问题。在机器学习中,我们通常需要通过调整模型的参数来最小化损失函数,从而使模型能够更好地拟合数据。梯度下降算法通过不断迭代更新参数,沿着损失函数的负梯度方向移动,逐步接近最优解。 以下是梯度下降

    2024年02月22日
    浏览(42)
  • [机器学习] 1. 梯度下降 Gradient Descent 与随机梯度下降 Stochastic Gradient Descent

    ML Theory 太魔怔了!!!!! 从微积分课上我们学到 对一个 (mathscr C^2) 函数,其二阶泰勒展开的皮亚诺余项形式 [f(bm w\\\') = f(bm w) + langle nabla f(bm w), bm w\\\' - bm wrangle + o(|bm w\\\' - bm w|)] 这说明只要 (bm w\\\') 和 (bm w) 挨得足够接近,我们就可以用 (f(bm w) + langle nabla f(

    2024年02月08日
    浏览(52)
  • 机器学习_通过梯度下降找到最佳参数

    所谓训练机器,也称拟合的过程,也就是 确定模型内部参数的过程 。具体到线性模型,也就是确定y’=wx+b 函数中的w和b。 对于线性回归来说,针对损失函数的 梯度下降 (gradient descent )方法可以使猜测沿着 正确的方向前进 ,因此总能找到比起上一次猜测时 误差更小的w和b组

    2024年01月21日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包