Python从0到1丨详解图像锐化的Sobel、Laplacian算子

这篇具有很好参考价值的文章主要介绍了Python从0到1丨详解图像锐化的Sobel、Laplacian算子。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文分享自华为云社区《[Python从零到壹] 五十八.图像增强及运算篇之图像锐化Sobel、Laplacian算子实现边缘检测》,作者: eastmount 。

一.Sobel算子

Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘。Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓[1-4]。

Sobel算子的边缘定位更准确,常用于噪声较多、灰度渐变的图像。其算法模板如公式(1)所示,其中dx表示水平方向,dy表示垂直方向[3]。

其像素计算公式如下:

Sobel算子像素的最终计算公式如下:

Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息。因为Sobel算子结合了高斯平滑和微分求导(分化),因此结果会具有更多的抗噪性,当对精度要求不是很高时,Sobel算子是一种较为常用的边缘检测方法。

Python和OpenCV将Sobel算子封装在Sobel()函数中,其函数原型如下所示:

  • dst = Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])

    – src表示输入图像

    – dst表示输出的边缘图,其大小和通道数与输入图像相同

    – ddepth表示目标图像所需的深度,针对不同的输入图像,输出目标图像有不同的深度

    – dx表示x方向上的差分阶数,取值1或 0

    – dy表示y方向上的差分阶数,取值1或0

    – ksize表示Sobel算子的大小,其值必须是正数和奇数

    – scale表示缩放导数的比例常数,默认情况下没有伸缩系数

    – delta表示将结果存入目标图像之前,添加到结果中的可选增量值

    – borderType表示边框模式,更多详细信息查阅BorderTypes

注意,在进行Sobel算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:

  • dst = convertScaleAbs(src[, dst[, alpha[, beta]]])

    – src表示原数组

    – dst表示输出数组,深度为8位

    – alpha表示比例因子

    – beta表示原数组元素按比例缩放后添加的值

Sobel算子的实现代码如下所示。

# -*- coding: utf-8 -*-

# By:Eastmount

import cv2

import numpy as np

import matplotlib.pyplot as plt



#读取图像

img = cv2.imread('luo.png')

lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像

grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)



#Sobel算子

x = cv2.Sobel(grayImage, cv2.CV_16S, 1, 0) #对x求一阶导

y = cv2.Sobel(grayImage, cv2.CV_16S, 0, 1) #对y求一阶导

absX = cv2.convertScaleAbs(x)

absY = cv2.convertScaleAbs(y)

Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#用来正常显示中文标签

plt.rcParams['font.sans-serif']=['SimHei']

#显示图形

titles = ['原始图像', 'Sobel算子']

images = [lenna_img, Sobel]

for i in range(2):

plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')

plt.title(titles[i])

plt.xticks([]),plt.yticks([])

plt.show()

其运行结果如图1所示:

二.Laplacian算子

拉普拉斯(Laplacian)算子是n维欧几里德空间中的一个二阶微分算子,常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素,基本流程是:

  • 判断图像中心像素灰度值与它周围其他像素的灰度值;
  • 如果中心像素的灰度更高,则提升中心像素的灰度;
  • 反之降低中心像素的灰度,从而实现图像锐化操作。

在算法实现过程中,Laplacian算子通过对邻域中心像素的四方向或八方向求梯度,再将梯度相加起来判断中心像素灰度与邻域内其他像素灰度的关系,最后通过梯度运算的结果对像素灰度进行调整[2]。

一个连续的二元函数f(x,y),其拉普拉斯运算定义为:

Laplacian算子分为四邻域和八邻域,四邻域是对邻域中心像素的四方向求梯度,八邻域是对八方向求梯度。其中,四邻域模板如公式(5)所示:

其像素的计算公式可以简化为:

通过模板可以发现,当邻域内像素灰度相同时,模板的卷积运算结果为0;当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。

Laplacian算子的八邻域模板如下:

其像素的计算公式可以简化为:

Python和OpenCV将Laplacian算子封装在Laplacian()函数中,其函数原型如下所示:

  • dst = Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])

    – src表示输入图像

    – dst表示输出的边缘图,其大小和通道数与输入图像相同

    – ddepth表示目标图像所需的深度

    – ksize表示用于计算二阶导数的滤波器的孔径大小,其值必须是正数和奇数,且默认值为1,更多详细信息查阅getDerivKernels

    – scale表示计算拉普拉斯算子值的可选比例因子。默认值为1,更多详细信息查阅getDerivKernels

    – delta表示将结果存入目标图像之前,添加到结果中的可选增量值,默认值为0

    – borderType表示边框模式,更多详细信息查阅BorderTypes

注意,Laplacian算子其实主要是利用Sobel算子的运算,通过加上Sobel算子运算出的图像x方向和y方向上的导数,得到输入图像的图像锐化结果。

同时,在进行Laplacian算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:

  • dst = convertScaleAbs(src[, dst[, alpha[, beta]]])

    – src表示原数组

    – dst表示输出数组,深度为8位

    – alpha表示比例因子

    – beta表示原数组元素按比例缩放后添加的值

当ksize=1时,Laplacian()函数采用3×3的孔径(四邻域模板)进行变换处理。下面的代码是采用ksize=3的Laplacian算子进行图像锐化处理,其代码如下:

# -*- coding: utf-8 -*-

# By:Eastmount

import cv2

import numpy as np

import matplotlib.pyplot as plt



#读取图像

img = cv2.imread('luo.png')

lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像

grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)



#拉普拉斯算法

dst = cv2.Laplacian(grayImage, cv2.CV_16S, ksize = 3)

Laplacian = cv2.convertScaleAbs(dst)

#用来正常显示中文标签

plt.rcParams['font.sans-serif']=['SimHei']

#显示图形

titles = ['原始图像', 'Laplacian算子']

images = [lenna_img, Laplacian]

for i in range(2):

plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')

plt.title(titles[i])

plt.xticks([]),plt.yticks([])

plt.show()

其运行结果如图2所示:

边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此需要采用滤波器来过滤噪声,并调用图像增强或阈值化算法进行处理,最后再进行边缘检测。下面是采用高斯滤波去噪和阈值化处理之后,再进行边缘检测的过程,并对比了四种常见的边缘提取算法。

# -*- coding: utf-8 -*-

# By:Eastmount

import cv2

import numpy as np

import matplotlib.pyplot as plt

#读取图像

img = cv2.imread('luo.png')

lenna_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#灰度化处理图像

grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#高斯滤波

gaussianBlur = cv2.GaussianBlur(grayImage, (3,3), 0)

#阈值处理

ret, binary = cv2.threshold(gaussianBlur, 127, 255, cv2.THRESH_BINARY)

#Roberts算子

kernelx = np.array([[-1,0],[0,1]], dtype=int)

kernely = np.array([[0,-1],[1,0]], dtype=int)

x = cv2.filter2D(binary, cv2.CV_16S, kernelx)

y = cv2.filter2D(binary, cv2.CV_16S, kernely)

absX = cv2.convertScaleAbs(x)

absY = cv2.convertScaleAbs(y)

Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#Prewitt算子

kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)

kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)

x = cv2.filter2D(binary, cv2.CV_16S, kernelx)

y = cv2.filter2D(binary, cv2.CV_16S, kernely)

absX = cv2.convertScaleAbs(x)

absY = cv2.convertScaleAbs(y)

Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)

#Sobel算子

x = cv2.Sobel(binary, cv2.CV_16S, 1, 0)

y = cv2.Sobel(binary, cv2.CV_16S, 0, 1)

absX = cv2.convertScaleAbs(x)

absY = cv2.convertScaleAbs(y)

Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#拉普拉斯算法

dst = cv2.Laplacian(binary, cv2.CV_16S, ksize = 3)

Laplacian = cv2.convertScaleAbs(dst)

#效果图

titles = ['Source Image', 'Binary Image', 'Roberts Image',

'Prewitt Image','Sobel Image', 'Laplacian Image']

images = [lenna_img, binary, Roberts, Prewitt, Sobel, Laplacian]

for i in np.arange(6):

plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')

plt.title(titles[i])

plt.xticks([]),plt.yticks([])

plt.show()

输出结果如图3所示。其中,Laplacian算子对噪声比较敏感,由于其算法可能会出现双像素边界,常用来判断边缘像素位于图像的明区或暗区,很少用于边缘检测;Robert算子对陡峭的低噪声图像效果较好,尤其是边缘正负45度较多的图像,但定位准确率较差;Prewitt算子对灰度渐变的图像边缘提取效果较好,而没有考虑相邻点的距离远近对当前像素点的影响;Sobel算子考虑了综合因素,对噪声较多的图像处理效果更好。

三.总结

本文主要介绍图像锐化和边缘检测知识,详细讲解了Sobel算子和Laplacian算子,并通过小珞珞图像进行边缘轮廓提取。图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。

参考文献:

  • [1] 冈萨雷斯著,阮秋琦译. 数字图像处理(第3版)[M]. 北京:电子工业出版社,2013.
  • [2] 阮秋琦. 数字图像处理学(第3版)[M]. 北京:电子工业出版社,2008.
  • [3] 杨秀璋,于小民,范郁锋,李娜. 基于苗族服饰的图像锐化和边缘提取技术研究[J]. 现代计算机,2018-10.
  • [4] Eastmount. [Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波[EB/OL]. (2018-09-02). https://blog.csdn.net/Eastmount/article/details/82216380.
  • [5] Eastmount. [数字图像处理] 七.MFC图像增强之图像普通平滑、高斯平滑、Laplacian、Sobel、Prewitt锐化详解[EB/OL]. (2015-06-08). https://blog.csdn.net/eastmount/article/ details/46378783.
  • [6] DSQiu. 图像锐化(增强)和边缘检测[EB/OL]. (2012-08-20). https://dsqiu.iteye.com/blog/1638589.https://blog.csdn.net/poem_qianmo/article/details/23184547.
  • [7] C. Tomasi, R Manduchi. Bilateral Filtering for Gray and Color images[C]. Proceedings of the IEEE International Conference on Computer Vision, Bombay, India. 1998:839-846.

点击关注,第一时间了解华为云新鲜技术~文章来源地址https://www.toymoban.com/news/detail-698003.html

到了这里,关于Python从0到1丨详解图像锐化的Sobel、Laplacian算子的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 我在Vscode学OpenCV 图像处理三(图像梯度--边缘检测【图像梯度、Sobel 算子、 Scharr 算子、 Laplacian 算子、Canny 边缘检测】)

    这里需要区分开边缘检测和轮廓检测 边缘检测并非万能,边缘检测虽然能够检测出边缘,但边缘是不连续的,检测到的边缘并不是一个整体。图像轮廓是指将边缘连接起来形成的一个整体,用于后续的计算。 OpenCV 提供了查找图像轮廓的函数 cv2.findContours(),该函数能够查找图

    2024年02月04日
    浏览(61)
  • Python从零到壹丨详解图像锐化Roberts、Prewitt算子实现边缘检测

    摘要: 图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。本章主要介绍Robert算子、Prewitt算子、Sobel算子、Laplacian算子、Scharr算子等。 本文分享自华为云社区《[Python从零到壹] 五十七.图像增强及运算篇之图像锐

    2024年02月05日
    浏览(53)
  • OpenCV(7):边缘检测之Sobel算子,Scharr算子,Laplacian算子和Canny算子边缘检测

    Sobel算子、Scharr算子、Laplacian算子和Canny算子都是常用的图像边缘检测算法。它们可以用来识别图像中物体之间的边界,从而对物体进行定位、跟踪、分割、识别等处理。 Sobel算子和Scharr算子都是基于卷积运算实现的边缘检测算法。Sobel算子使用两个3×3的矩阵对原始图像进行卷

    2024年02月05日
    浏览(52)
  • (数字图像处理MATLAB+Python)第七章图像锐化-第一、二节:图像锐化概述和微分算子

    图像锐化 :是一种用于改善图像质量的技术,它可以 增强图像中的高频细节信息 ,从而使得图像更加清晰和有视觉冲击力。在图像处理和计算机视觉中,图像锐化通常被用于特征提取、图像增强、目标识别等应用中 图像边缘分析 :是一种用于在图像中找到 明显的边缘或轮

    2024年02月01日
    浏览(67)
  • opencv基础41-图像梯度-sobel算子详解cv2.Sobel()(边缘检测基础)

    图像梯度是用于描述图像变化率的概念。在图像处理中,梯度指的是图像中每个像素的灰度值变化速率或方向。它常用于边缘检测和图像特征提取。 一维图像的梯度表示为函数 f(x) 的导数,而在二维图像中,梯度是一个向量,包含两个分量:水平方向和垂直方向的灰度变化率

    2024年02月14日
    浏览(48)
  • Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)

    目录 图像锐化概述 算法方法介绍  代码实现 效果展示 图像锐化 (image sharpening) 是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波

    2023年04月17日
    浏览(49)
  • 机器视觉技术与应用实战(平均、高斯、水平prewitt、垂直prewitt、水平Sobel、垂直Sobel、拉普拉斯算子、锐化、中值滤波)

         扯一点题外话,这一个月经历了太多,接连感染了甲流、乙流,人都快烧没了,乙流最为严重,烧了一个星期的38-39度,咳嗽咳到虚脱。还是需要保护好身体,感觉身体扛不住几次连续发烧!(甲流乙流是病毒,提前准备好奥司他韦,这个是阻断病毒复制的药,48小时内

    2024年01月21日
    浏览(57)
  • 图像梯度——Sobel、Scharr、Laplacian

    图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) src: 图像数组变量 ddepth: 图像的深度,一般填-1,表示与原始图像深度一致; cv2.CV_64F表示每一个像素点值为64位浮点数,是OpenCV定义的数据类型 dx和dy分别表示水平和竖直方向,1表示计算该方向的梯度,0表示不计算 ksize是

    2024年02月11日
    浏览(41)
  • 图像边缘检测--(Sobel、Laplacian、Canny)

    1、图像中各种形状的检测是计算机视觉领域中非常常见的技术之一,特别是图像中直线的检测,圆的检测,图像边缘的检测等,下面将介绍如何快速检测图像边缘。 2、边缘是不同区域的分界线,是周围(局部)像素有显著变化的像素的集合,有幅值与方向两个属性。这个不

    2024年02月07日
    浏览(51)
  • 图像处理Sobel 算子

      Sobel算子是一种常用的图像处理算法,用于边缘检测。它利用了图像中灰度值的变化来识别边缘的位置。在OpenCV中,Sobel算子通常用于图像梯度计算,其中包括水平方向和垂直方向的梯度。这两个方向的梯度合并后可以得到图像的边缘信息。 原理:   Sobel算子的原理基

    2024年02月04日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包