【FreeRTOS】详细讲解FreeRTOS中消息队列并通过示例讲述其用法

这篇具有很好参考价值的文章主要介绍了【FreeRTOS】详细讲解FreeRTOS中消息队列并通过示例讲述其用法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

使用消息队列的原因

  在裸机系统中,两个程序间需要共享某个资源通常使用全局变量来实现;但在含操作系统(下文就拿FreeRTOS举例)的开发中,则使用消息队列完成。那么这两者有啥区别呢?🤔🤔🤔
  其实在FreeRTOS系统中也能够像裸机似的,使用全局变量实现多程序共享某个资源(这里资源就可称为临界资源),则多个程序都能随时访问同一个临界资源,这时若两个程序同时访问同一个临界资源来完成两次资源读写操作,假如两个程序读取操作是同时完成,但是写入操作有先后之别,那么最后实际完成的操作就会是一个。例如下图:

freertos 创建消息队列,# FreeRTOS,操作系统,单片机,c语言,嵌入式硬件,stm32

  看完上图后,大家可能会想:两者结果相同,无所谓了。但是呢,如果此时再来个C程序恰好读取到的值为456,那么是不是跟最终结果789存在偏差呢!!!😅😅😅

  因此,在FreeRTOS系统中,引入了消息队列来实现某个资源共享,其不仅仅实现临界资源共享,也给临界资源提供保护,使得程序更加稳定。


消息队列

  消息队列,是一种用于任务与任务间、中断和任务间传递一条或多条信息的数据结构,实现了任务接收来自其他任务中断不固定或固定长度的消息
  任务从队列里面读取消息时,如果队列中消息为空,读取消息的任务将被阻塞;否则任务就读取消息并且处理。用户还可以指定阻塞任务时间 xTicksToWait(),在指定阻塞时间内,如果队列为空,该任务将保持阻塞状态以等待队列数据有效
  有多个消息发送到消息队列时,通常将先进入队列的消息先传给任务,也就是说,任务一般读取到的消息是最先进入消息队列的消息,即先进先出原则(FIFO),但也支持后进先出原则(LIFO)
  FreeRTOS 中使用队列数据结构实现任务异步通信工作,其具有如下特性:

  • 消息支持先进先出的方式排队,支持异步读写的工作方式;
  • 读写队列均支持超时机制
  • 消息支持后进先出方式排队,即直接往队首发送消息(LIFO);
  • 允许不同长度(不超过队列节点最大值)的任意类型消息;
  • 一个任务能够与任意一个消息队列接收和发送消息的操作;
  • 多个任务能够与同一个消息队列接收和发送消息的操作;
  • 当队列使用结束后,可以通过删除队列函数进行删除函数

消息队列收发双方处理机制

  • 创建消息队列,FreeRTOS系统会分配一块单个消息大小与消息队列长度乘积的空间;(创建成功后,每个消息的大小及消息队列长度无法更改,不能写入大于单个消息大小的数据,并且只有删除消息队列时,才能释放队列占用的内存。)

  • 写入消息队列,当消息队列未满或允许覆盖入队时,FreeRTOS系统会直接将消息复制到队列末端;否则,程序会根据指定的阻塞时间进入阻塞状态,直到消息队列未满或者是阻塞时间超时,程序就会进入就绪状态;
    写入紧急消息,本质上与普通消息差不多,不同的是其将消息直接复制到消息队列队首

  • 读取消息队列,在指定阻塞时间内,未读取到消息队列中的数据(消息队列为空),程序进入阻塞状态,等待消息队列中有数据;一旦阻塞时间超时,程序进入就绪态

  • 一旦消息队列不再使用时,应该将其删除;(此时会永久删除)

freertos 创建消息队列,# FreeRTOS,操作系统,单片机,c语言,嵌入式硬件,stm32
消息队列的处理机制图
(图有点丑,大家伙将就一下吧🤣🤣🤣)

函数解析

消息队列通用创建
函数原型

QueueHandle_t xQueueGenericCreate( 
								   const UBaseType_t uxQueueLength,
                                   const UBaseType_t uxItemSize,
                                   const uint8_t ucQueueType 
                                 );

参数解析

  • const UBaseType_t uxQueueLength:设置消息队列长度;
  • const UBaseType_t uxItemSize:设置消息队列中单个消息大小;
  • const uint8_t ucQueueType:设置消息队列的类型;

函数说明
  一个通用的消息队列创建函数,该函数自己给其他函数提供API,自己也调用函数prvInitialiseNewQueue()完成消息队列创建功能。

消息队列动态创建
函数原型

QueueHandle_t xQueueCreate(
                            UBaseType_t uxQueueLength,
                            UBaseType_t uxItemSize
                         );

参数解析

  • UBaseType_t uxQueueLength:设置消息队列长度;
  • UBaseType_t uxItemSize:设置消息队列中单个消息的大小;

函数说明
  创建函数,实际上使用还是调用函数 xQueueGenericCreate()完成消息队列创建工作。
  当消息队列创建成功时,返回一个消息队列的控制句柄,用于访问创建的队列;否则,返回NULL,可能原因是创建队列需要的 RAM 无法分配成功。

消息队列静态创建
函数原型

QueueHandle_t xQueueCreateStatic(
 	                             UBaseType_t uxQueueLength,
    	                         UBaseType_t uxItemSize,
        	                     uint8_t *pucQueueStorage,
            	                 StaticQueue_t *pxQueueBuffer
                		        );

参数解析

  • UBaseType_t uxQueueLength:设置消息队列长度;
  • UBaseType_t uxItemSize:设置消息队列中单个消息大小;
  • uint8_t *pucQueueStorage:传递消息队列中单个消息的存储结构;
  • StaticQueue_t *pxQueueBuffer:传递自定义的消息队列;

函数说明

  xQueueCreateStatic()用于创建一个新的队列并返回可用于访问这个队列的队列句柄,队列句柄其实就是一个指向队列数据结构类型的指针。
  当返回值为NULL时,创建失败,失败原因与动态创建类似,即可能是创建队列需要的 RAM 无法分配成功。

消息队列删除
函数原型

void vQueueDelete( QueueHandle_t xQueue );

参数解析

  • QueueHandle_t xQueue:消息队列的控制句柄;

函数说明
  使用函数vQueueDelete()可以将一个消息队列中的所有信息都清空回收,并且该队列将无法继续使用。值得注意的是,一个没有创建的消息队列,是无法删除的

发送消息到消息队列
函数原型

BaseType_t xQueueSend(
                       QueueHandle_t xQueue,
                       const void * pvItemToQueue,
                       TickType_t xTicksToWait
                     );

参数解析

  • QueueHandle_t xQueue:传入消息队列的控制句柄;
  • const void * pvItemToQueue:传入需要发送到消息队列中的数据;
  • TickType_t xTicksToWait:设置阻塞超时时间,设置成0,可直接返回;

函数说明
  发送函数实际上调用PAI函数xQueueGenericSend();该函数也等同于函数xQueueSendToBack()
  发送消息函数xQueueSend(),其处理机制为:当消息队列未满或允许覆盖入队时,FreeRTOS系统会直接将消息复制到队列末端;否则,程序会根据指定的阻塞时间进入阻塞状态,直到消息队列未满或者是阻塞时间超时,程序就会进入就绪状态。

中断中发送消息到消息队列
函数原型

 BaseType_t xQueueSendFromISR(
                               QueueHandle_t xQueue,
                               const void *pvItemToQueue,
                               BaseType_t *pxHigherPriorityTaskWoken
                             );

参数解析

  • QueueHandle_t xQueue:传递消息队列的控制权柄;
  • const void *pvItemToQueue:传递需要发送的消息;
  • BaseType_t *pxHigherPriorityTaskWoken:若消息入队列时产生一个更高优先级的任务,那么改参数就会被设置成pdTRUE,系统在中断函数结束前会切换任务,去执行更高优先级的任务。在FReeRTOS V7.3.0起,该函数为一个可选参数。

函数说明
  该函数实际上调用FreeRTOS系统APIxQueueGenericSendFromISR()来完成在中断中发送消息。该函数功能上与xQueueSendToBackFromISR()相同,并且两者参数完全一致。

发送消息到消息队列队首
函数原型

BaseType_t xQueueSendToToFront(
                                 QueueHandle_t    xQueue,
                                 const void       *pvItemToQueue,
                                 TickType_t       xTicksToWait
                              );

参数解析

  • QueueHandle_t xQueue:消息队列的控制句柄;
  • const void *pvItemToQueue:需要发送的消息;
  • TickType_t xTicksToWait:函数阻塞超时时间;

函数说明
  该函数实际上还是调用函数xQueueGenericSend()来完成其功能的。
  xQueueSendToToFront()向队列队首发送一个消息;发送消息成功返回pdTRUE,否则返回 errQUEUE_FULL

中断中发送消息到消息队列队首
函数原型

 BaseType_t xQueueSendToFrontFromISR(
                                       QueueHandle_t xQueue,
                                       const void *pvItemToQueue,
                                       BaseType_t *pxHigherPriorityTaskWoken
                                    );

参数解析

  • QueueHandle_t xQueue:消息队列的控制句柄;
  • const void *pvItemToQueue:需要发送的消息;
  • BaseType_t *pxHigherPriorityTaskWoken:与xQueueSendFromISR中的该参数类似,都是与队列插入数据时产生的更高优先级任务有关;

函数说明

消息队列接收函数
函数原型

BaseType_t xQueueReceive( 
						  QueueHandle_t xQueue,
                          void * const pvBuffer,
                          TickType_t xTicksToWait
                        );

参数解析

  • QueueHandle_t xQueue:消息队列的控制权柄;
  • void * const pvBuffer:指向存储消息队列数据的存储空间;
  • TickType_t xTicksToWait:消息队列接收函数的最大阻塞时间。若该函数设置为0,则函数立刻返回;

函数说明
  一旦消息队列接收成功后会返回pdTRUE;否则,返回pdFALSE。接收消息队列后会删除该消息,倘若不想删除该信息,可使用函数xQueuePeek()

在中断中接收消息队列中消息
函数原型

BaseType_t xQueueReceiveFromISR( 
							QueueHandle_t xQueue,
                            void * const pvBuffer,
                            BaseType_t * const pxHigherPriorityTaskWoken
                                );

参数解析

  • QueueHandle_t xQueue:消息队列的控制权柄;
  • void * const pvBuffer:需要发送的消息
  • BaseType_t * const pxHigherPriorityTaskWoken:任务在往队列发送信息时,如果队列满,则任务将阻塞在该队列上,若xQueueReceiveFromISR()函数碰都一个任务,则*pxHigherPriorityTaskWoken=pdTRUE;否则,其值为NULL

函数说明
  函数xQueueReceiveFromISR()是函数xQueueReceive的中断版本,功能上一样,即接收函数后,也会将该消息删除,若不想删除可使用函数 xQueuePeekFromISR。同样,函数 xQueuePeekFromISR()是函数xQueuePeek()的中断版,功能上也是一样的。


示例

示例1
  先创建两个任务,再通过消息队列实现任务间一对一通信,来完成任务2控制任务1实现依次反转LED1-LED8的状态。此时消息队列传递的是一个整型数据

//任务控制权柄
TaskHandle_t xHandleTsak[4];
//消息队列控制权柄
QueueHandle_t xMyQueueHandle;

int main(void)
{
	//存储创建任务的返回值
	BaseType_t xReturn[5] ;
	
	xMyQueueHandle = xQueueCreate(20,sizeof(uint16_t));
	
	if(xMyQueueHandle == 0)
		//点亮LED7
		changeLedStateByLocation(LED7,ON);
	
	//动态创建任务1
	xReturn[0] = xTaskCreate(
				(TaskFunction_t )queueMesageTask1,
				(const char *)"queueMesageTask1",(uint16_t)512,
				(void*)NULL,2,&xHandleTsak[0]
				);
	
	//动态创建任务2
	xReturn[1] = xTaskCreate(
				(TaskFunction_t )queueMesageTask2,
				(const char *)"queueMesageTask2",
				(uint16_t)512,(void*)NULL,1,
				&xHandleTsak[1]
				);		
	//创建成功 
	if (pdPASS == xReturn[0] == xReturn[1])
		//启动任务,开启调度 
		vTaskStartScheduler(); 
	//创建失败
	else
		//点亮LED6
		changeLedStateByLocation(LED6,ON);
}

/********************************************
* 函数功能:消息队列测试函数1
* 函数参数:无
* 函数返回值:无
********************************************/
void queueMesageTask1(void)
{
	// 定义一个接收消息的变量
	uint16_t r_queue;
	while(1)
	{
		 if( pdTRUE == xQueueReceive( xMyQueueHandle,&r_queue,portMAX_DELAY) )
			rollbackLedByLocation(r_queue);
	}
}

/********************************************
* 函数功能:消息队列测试函数2
* 函数参数:无
* 函数返回值:无
********************************************/
void queueMesageTask2(void)
{
	uint16_t data[] = {LED1,LED2,LED3,LED4,LED5,LED6,LED7,LED8};
	//保存需要发送的数据
	static uint16_t i = 0;
	//保存系统时间
	static portTickType myPreviousWakeTime;
	//保存阻塞时间
	const volatile TickType_t xDelay1500ms = pdMS_TO_TICKS( 1500UL );
	//获取当前时间
	myPreviousWakeTime = xTaskGetTickCount();
	while(1)
	{
		xQueueSend( xMyQueueHandle,&data[i],0 );
		if(++i == 8) i = 0;
		
		//非阻塞延时1.5s
		xTaskDelayUntil( &myPreviousWakeTime,xDelay1500ms );
	}
}

示例2
  使用xTaskCreate()函数创建三个任务,其中有两个发送消息任务,一个接收消息任务,以完成一个多对一消息队列的实验。
  在创建任务时,为了使得代码更加舒服,采用带参数创建FreeRTOS任务的方法,即先将函数需要用到的参数使用结构体保存,然后再通过xTaskCreate()函数的第四个参数传递给相应任务。
  相对于示例1,示例2对任务间传递的消息也进行了优化,使其传递的数据由一个整型变量改成一个结构体改变后,即有利于消息数据的扩展,同时,也方便多个多种类型消息同时传递

// 消息队列传输的数据类型
struct messageQueue{
	int id;
	char msg[100];
};

//创建任务时传递参数结构体
struct taskParameters{
	// 任务ID
	int id;
	// 绝对延时延时时间
	uint16_t delayTime;
	// LED灯位置
	uint16_t LEDLOCATION;
	// LCD显示行
	u8 lcdLine;
	// 整型参数,用于变量倍增
	int number;
};

void queueMesageTask1(void);
void queueMesageTask2(struct taskParameters* params);

//任务控制权柄
TaskHandle_t xHandleTsak[4];
//消息队列控制权柄
QueueHandle_t xMyQueueHandle;
// 任务参数 
struct taskParameters param[2] = {{0,1500,LED1,Line6,1},{1,1000,LED2,Line7,2}};
//任务名字
char*taskName[] = {"task1","task2"};

/*****************************************
* 函数功能:freertos工作函数
* 函数参数:无
* 函数返回值:无
*****************************************/
void freertosWork(void)
{
//创建两个任务 用于测试消息队列
	unsigned  int i = 0;
	
	//存储创建任务的返回值
	BaseType_t xReturn[5] ;
	
	// 创建消息队列
	xMyQueueHandle = xQueueCreate(20,sizeof(struct messageQueue));
	if(xMyQueueHandle == 0)
		//点亮LED7
		changeLedStateByLocation(LED7,ON);
	
	//动态创建任务
	for(i=0;i<2;i++)
		xReturn[i] = xTaskCreate((TaskFunction_t )queueMesageTask2,
					(const char *)taskName[i],(uint16_t)128,
					(struct taskParameters*) &param[i],1,&xHandleTsak[i]
					);
	
	//动态创建任务1
	xReturn[3] = xTaskCreate(
					(TaskFunction_t )queueMesageTask1,
					(const char *)"queueMesageTask3",
					(uint16_t)128,(void*)NULL,1,&xHandleTsak[3]
				);		
				
	LCD_DisplayStringLine(Line0,(uint8_t*)"receve:");
	LCD_DisplayStringLine(Line5,(uint8_t*)"send:");
	
	if (pdPASS == xReturn[0] == xReturn[1] == xReturn[2])
		//点亮LED6
		changeLedStateByLocation(LED6,ON);				
	else
		vTaskStartScheduler();
}

/********************************************
* 函数功能:消息队列测试函数1
* 函数参数:无
* 函数返回值:无
********************************************/
void queueMesageTask1(void)
{	
	// 定义一个接收消息的变量
	struct messageQueue r_queue;
	char temp[100];
	int j1=1;
	while(1)
	{
		//接收数据  如果数据接收成功就处理 否则就点亮LED4
		if( pdTRUE == xQueueReceive( xMyQueueHandle,&r_queue,portMAX_DELAY) )
		{
			sprintf(temp,"(%s;%s;%d;)",pcTaskGetName(xHandleTsak[r_queue.id]),r_queue.msg,r_queue.id);
			
			//任务2发送的数据
			if(r_queue.id == 0)
				LCD_DisplayStringLine(Line1,(uint8_t*)temp);
			//任务3发送的数据
			else
				LCD_DisplayStringLine(Line2,(uint8_t*)temp);
			//每次接收数据后闪烁一次LED3
			changeAllLedByStateNumber(OFF);
			changeLedStateByLocation(LED3,j1++%2);
		}
		//数据接收失败 点亮LED4
		else
		{
			changeAllLedByStateNumber(OFF);
			changeLedStateByLocation(LED4,ON);
		}
	}
}

/********************************************
* 函数功能:消息队列测试函数2
* 函数参数:无
* 函数返回值:无
********************************************/
void queueMesageTask2(struct taskParameters* params)
{
	//初始化以及保存需要发送的数据
	struct messageQueue _sData;
	struct messageQueue*sData = &_sData;
	sData->id = params->id;
	//显示需要发送的数据
	char temp[50];
	uint16_t count = 0;
	//保存系统时间
	portTickType myPreviousWakeTime;
	//保存阻塞时间
	TickType_t xDelayms = pdMS_TO_TICKS( params->delayTime );
	//获取当前时间
	myPreviousWakeTime = xTaskGetTickCount();
	while(1)
	{
		// 改变本次发送的数据
		sprintf(sData->msg,"%s%d","Sender2:",count+=params->number);
		sprintf(temp,"(%s;%d)",sData->msg,sData->id);
		LCD_DisplayStringLine(params->lcdLine,(uint8_t*)temp);
		
		//关闭所有LED灯 避免LCD带来的影响
		changeAllLedByStateNumber(0);
		//发送数据 如果发送成功就点亮一次LED1
		if( xQueueSend( xMyQueueHandle,&_sData,0 ) == pdTRUE)
			changeLedStateByLocation(params->LEDLOCATION,ON);
		
		//非阻塞延时(ms)
		xTaskDelayUntil( &myPreviousWakeTime,xDelayms );
	}
}

结果

freertos 创建消息队列,# FreeRTOS,操作系统,单片机,c语言,嵌入式硬件,stm32

遇到的问题

keil报错展示

freertos 创建消息队列,# FreeRTOS,操作系统,单片机,c语言,嵌入式硬件,stm32

报错分析
  该报错是由于结构体初始化时引起的,keil中不支持不完整定义的变量;但是可以看看小编目前使用的变量struct taskParameters param[2] = {{0,1500,LED1,Line6,1},{1,1000,LED2,Line7,2}};其一样可以啊!😢🤔因此到底什么原因小编暂时也不得而知了。

小编的解决方案
  不知道小编这样子到底算不算解决了该问题🤣🤣🤣:
  首先,小编整理了代码,将一些不必要的变量全部都删除,并且优化了代码架构,最后这个程序莫名其妙就可以使用了,没有丝毫报错与警告。🤔😅😅😅

freertos 创建消息队列,# FreeRTOS,操作系统,单片机,c语言,嵌入式硬件,stm32

  还有个问题是关于变量struct taskParameters param[2] = {{0,1500,LED1,Line6,1},{1,1000,LED2,Line7,2}};的,该变量最高定义为全局变量,否则程序就会跑飞;如果实在要将其定义为局部变量也行,但是需要换一种结构体初始化的方式。


  小编这里也有其他的一些相关文章,欢迎各位点击观看😉😉😉文章来源地址https://www.toymoban.com/news/detail-698631.html

  • 【FreeRTOS】详细讲解FreeRTOS中任务管理并通过示例讲述其用法
  • 【FreeRTOS】详细讲解FreeRTOS的软件定时器及通过示例讲述其用法

    最后 ,欢迎大家留言或私信交流,共同进步!😁😁😁

到了这里,关于【FreeRTOS】详细讲解FreeRTOS中消息队列并通过示例讲述其用法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FreeRTOS-消息队列详解

    ✅作者简介:嵌入式入坑者,与大家一起加油,希望文章能够帮助各位!!!! 📃个人主页: @rivencode的个人主页 🔥系列专栏: 玩转FreeRTOS 💬保持学习、保持热爱、认真分享、一起进步!!! 本文将详细全方位的讲解FreeRTOS的队列消息,其实在FreeRTOS中队列的重要性也不言

    2024年02月05日
    浏览(47)
  • FreeRTOS(3)----消息队列

    一.消息队列的基本概念 队列成为消息队列,可以进行任务与任务间,中断和任务间传递信息,实现任务接收来自其他任务或中断的不固定长度的消息,任务可以从队列中读取消息,当队列消息为空的时候,读取消息的任务将会被阻塞,但是可以设定等待阻塞任务的时候xTic

    2024年03月18日
    浏览(73)
  • FreeRTOS - 消息队列

    消息队列(queue):可以在任务与任务间、中断和任务间传递消息,实现任务接收来自其他任务或中断的不固定的消息 1、使用消息队列检测串口输入 2、通过串口发送字符串openled1,openled2,openled3,分别打开板载led1,led2,led3 3、通过串口发送字符串closeled1,closeled2,closele

    2023年04月08日
    浏览(48)
  • FreeRTOS教程4 消息队列

    正点原子stm32f407探索者开发板V2.4 STM32CubeMX软件(Version 6.10.0) Keil µVision5 IDE(MDK-Arm) 野火DAP仿真器 XCOM V2.6串口助手 本文主要学习 FreeRTOS 消息队列的相关知识, 包括消息队列概述、创建删除复位队列、写入/读取数据到队列等关于队列的基础知识 在一个实时操作系统构成的

    2024年03月14日
    浏览(43)
  • FreeRTOS 消息队列 详解

    目录 什么是队列? 消息队列特点 1. 数据入队出队方式 2. 数据传递方式 3. 多任务访问 4. 出队、入队阻塞 消息队列相关 API 函数 1. 创建队列 2. 写队列 3. 读队列 消息队列实操 队列又称 消息队列 ,是一种常用于任务间通信的数据结构,队列可以在任务与任务间、中断和任 务

    2024年02月08日
    浏览(44)
  • FreeRTOS源码分析-7 消息队列

    目录 1 消息队列的概念和作用 2 应用 2.1功能需求 2.2接口函数API 2.3 功能实现 3 消息队列源码分析 3.1消息队列控制块 3.2消息队列创建 3.3消息队列删除 3.4消息队列在任务中发送 3.5消息队列在中断中发送 3.6消息队列在任务中接收 3.7消息队列在中断中接收  消息队列(queue),可

    2024年02月14日
    浏览(39)
  • 【FreeRTOS】【应用篇】消息队列【下篇】

    本篇文章主要对 FreeRTOS 中消息队列的概念和相关函数进行了详解 消息队列【下篇】详细剖析了消息队列中发送、接收时队列消息控制块中各种指针的行为,以及几个发送消息和接收消息的函数的运作流程 笔者有关于 【FreeRTOS】【应用篇】消息队列【上篇】——队列基本概念

    2024年02月10日
    浏览(41)
  • 【STM32】FreeRTOS消息队列和信号量学习

    一、消息队列(queue) 队列是一种用于实现任务与任务之间,任务与中断之间消息交流的机制。 注意:1.数据的操作是FIFO模式。 2.队列需要明确数据的大小和队列的长度。 3.写和读都会出现堵塞。 实验:创建一个消息队列,两个发送任务,一个接收任务。 其中任务一任务三

    2024年02月13日
    浏览(41)
  • FreeRTOS中断调用API消息队列发送函数导致系统死机(memcpy函数卡死)

    背景:写一组在FreeRTOS系统下的串口驱动 ,芯片使用的是杰发科的 AC781x系列 , ARM® CortexM3 内核,96MHz主频。 项目场景:计划使用dma接收数据,设置dma半满中断与全满中断,在半满中断中把前半部分数据传入消息队列,在全满中断中把后半部分数据传入消息队列。 问题1: 在中

    2024年02月15日
    浏览(47)
  • linux中互斥锁,自旋锁,条件变量,信号量,与freeRTOS中的消息队列,信号量,互斥量,事件的区别

    对于目前主流的RTOS的任务,大部分都属于并发的线程。 因为MCU上的资源每个任务都是共享的,可以认为是单进程多线程模型。 【freertos】003-任务基础知识 在没有操作系统的时候两个应用程序进行消息传递一般使用全局变量的方式,但是如果在使用操作系统的应用中用全局变

    2024年02月11日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包