尚硅谷大数据项目《在线教育之离线数仓》笔记007

这篇具有很好参考价值的文章主要介绍了尚硅谷大数据项目《在线教育之离线数仓》笔记007。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

视频地址:尚硅谷大数据项目《在线教育之离线数仓》_哔哩哔哩_bilibili

目录

第12章 报表数据导出

P112

01、创建数据表

02、修改datax的jar包

03、ads_traffic_stats_by_source.json文件

P113

P114

P115

P116

P117

P118

P119

P120

P121

P122【122_在线教育数仓开发回顾 04:23】


第12章 报表数据导出

P112

01、创建数据表
# 第12章 报表数据导出
CREATE DATABASE IF NOT EXISTS edu_report DEFAULT CHARSET utf8 COLLATE utf8_general_ci;

# 12.1.2 创建表


# 01)各来源流量统计
DROP TABLE IF EXISTS ads_traffic_stats_by_source;
CREATE TABLE ads_traffic_stats_by_source
(
    `dt`               DATETIME COMMENT '统计日期',
    `recent_days`      BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `source_id`        VARCHAR(255) COMMENT '引流来源id',
    `source_site`      VARCHAR(255) COMMENT '引流来源名称',
    `uv_count`         BIGINT COMMENT '访客人数',
    `avg_duration_sec` BIGINT COMMENT '会话平均停留时长,单位为秒',
    `avg_page_count`   BIGINT COMMENT '会话平均浏览页面数',
    `sv_count`         BIGINT COMMENT '会话数',
    `bounce_rate`      DECIMAL(16, 2) COMMENT '跳出率',
    PRIMARY KEY (`dt`, `recent_days`, `source_id`)
) COMMENT '各引流来源流量统计';


# 02)页面浏览路径分析
DROP TABLE IF EXISTS ads_traffic_page_path;
CREATE TABLE ads_traffic_page_path
(
    `dt`          DATETIME COMMENT '统计日期',
    `recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `source`      VARCHAR(255) COMMENT '跳转起始页面id',
    `target`      VARCHAR(255) COMMENT '跳转终到页面id',
    `path_count`  BIGINT COMMENT '跳转次数',
    PRIMARY KEY (`dt`, `recent_days`, `source`, `target`)
) COMMENT '页面浏览路径分析';


# 03)各引流来源销售状况统计
DROP TABLE IF EXISTS ads_traffic_sale_stats_by_source;
CREATE TABLE ads_traffic_sale_stats_by_source
(
    `dt`                 DATETIME COMMENT '统计日期',
    `recent_days`        BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `source_id`          VARCHAR(255) COMMENT '引流来源id',
    `source_site`        VARCHAR(255) COMMENT '引流来源名称',
    `order_total_amount` DECIMAL(16, 2) COMMENT '销售额',
    `order_user_count`   BIGINT COMMENT '下单用户数',
    `pv_visitor_count`   BIGINT COMMENT '引流访客数',
    `convert_rate`       DECIMAL(16, 2) COMMENT '转化率',
    PRIMARY KEY (`dt`, `recent_days`, `source_id`)
) COMMENT '各引流来源销售状况统计';


# 04)用户变动统计
DROP TABLE IF EXISTS ads_user_user_change;
CREATE TABLE ads_user_user_change
(
    `dt`               DATETIME COMMENT '统计日期',
    `user_churn_count` BIGINT COMMENT '流失用户数',
    `user_back_count`  BIGINT COMMENT '回流用户数',
    PRIMARY KEY (`dt`)
) COMMENT '用户变动统计';


# 05)用户留存率
DROP TABLE IF EXISTS ads_user_user_retention;
CREATE TABLE ads_user_user_retention
(
    `dt`              DATETIME COMMENT '统计日期',
    `create_date`     VARCHAR(255) COMMENT '用户新增日期',
    `retention_day`   INT COMMENT '截至当前日期留存天数',
    `retention_count` BIGINT COMMENT '留存用户数量',
    `new_user_count`  BIGINT COMMENT '新增用户数量',
    `retention_rate`  DECIMAL(16, 2) COMMENT '留存率',
    PRIMARY KEY (`dt`, `create_date`, `retention_day`)
) COMMENT '用户留存率';


# 06)用户新增活跃统计
DROP TABLE IF EXISTS ads_user_user_stats;
CREATE TABLE ads_user_user_stats
(
    `dt`                DATETIME COMMENT '统计日期',
    `recent_days`       BIGINT COMMENT '最近n日,1:最近1日,7:最近7日,30:最近30日',
    `new_user_count`    BIGINT COMMENT '新增用户数',
    `active_user_count` BIGINT COMMENT '活跃用户数',
    PRIMARY KEY (`dt`, `recent_days`)
) COMMENT '用户新增活跃统计';


# 07)用户行为漏斗分析
DROP TABLE IF EXISTS ads_user_user_action;
CREATE TABLE ads_user_user_action
(
    `dt`                DATETIME COMMENT '统计日期',
    `recent_days`       BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `home_count`        BIGINT COMMENT '浏览首页人数',
    `good_detail_count` BIGINT COMMENT '浏览商品详情页人数',
    `cart_count`        BIGINT COMMENT '加入购物车人数',
    `order_count`       BIGINT COMMENT '下单人数',
    `payment_count`     BIGINT COMMENT '支付人数',
    PRIMARY KEY (`dt`, `recent_days`)
) COMMENT '用户行为漏斗分析';


# 08)新增交易用户统计
DROP TABLE IF EXISTS ads_user_new_buyer_stats;
CREATE TABLE ads_user_new_buyer_stats
(
    `dt`                     DATETIME COMMENT '统计日期',
    `recent_days`            BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `new_order_user_count`   BIGINT COMMENT '新增下单人数',
    `new_payment_user_count` BIGINT COMMENT '新增支付人数',
    PRIMARY KEY (`dt`, `recent_days`)
) COMMENT '新增交易用户统计';


# 09)各年龄段下单用户数
DROP TABLE IF EXISTS ads_user_order_user_count_by_age_group;
CREATE TABLE ads_user_order_user_count_by_age_group
(
    `dt`               DATETIME COMMENT '统计日期',
    `recent_days`      BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `age_group`        VARCHAR(255) COMMENT '年龄段,18岁及以下、19-24岁、25-29岁、30-34岁、35-39岁、40-49岁、50岁及以上',
    `order_user_count` BIGINT COMMENT '下单人数',
    PRIMARY KEY (`dt`, `recent_days`, `age_group`)
) COMMENT '各年龄段下单用户数统计';


# 10)各类别课程交易统计
DROP TABLE IF EXISTS ads_course_trade_stats_by_category;
CREATE TABLE ads_course_trade_stats_by_category
(
    `dt`               DATETIME COMMENT '统计日期',
    `recent_days`      BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `category_id`      VARCHAR(255) COMMENT '类别id',
    `category_name`    VARCHAR(255) COMMENT '类别名称',
    `order_count`      BIGINT COMMENT '订单数',
    `order_user_count` BIGINT COMMENT '订单人数' ,
    `order_amount`     DECIMAL(16, 2) COMMENT '下单金额',
    PRIMARY KEY (`dt`, `recent_days`, `category_id`)
) COMMENT '各类别课程交易统计';


# 11)各学科课程交易统计
DROP TABLE IF EXISTS ads_course_trade_stats_by_subject;
CREATE TABLE ads_course_trade_stats_by_subject
(
    `dt`               DATETIME COMMENT '统计日期',
    `recent_days`      BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `subject_id`       VARCHAR(255) COMMENT '学科id',
    `subject_name`     VARCHAR(255) COMMENT '学科名称',
    `order_count`      BIGINT COMMENT '订单数',
    `order_user_count` BIGINT COMMENT '订单人数' ,
    `order_amount`     DECIMAL(16, 2) COMMENT '下单金额',
    PRIMARY KEY (`dt`, `recent_days`, `subject_id`)
) COMMENT '各学科课程交易统计';


# 12)各课程交易统计
DROP TABLE IF EXISTS ads_course_trade_stats_by_course;
CREATE TABLE ads_course_trade_stats_by_course
(
    `dt`               DATETIME COMMENT '统计日期',
    `recent_days`      BIGINT COMMENT '最近天数,1:最近 1 天,7:最近 7天,30:最近 30 天',
    `course_id`        VARCHAR(255) COMMENT '课程id',
    `course_name`      VARCHAR(255) COMMENT '课程名称',
    `order_count`      BIGINT COMMENT '下单数',
    `order_user_count` BIGINT COMMENT '下单人数',
    `order_amount`     DECIMAL(16, 2) COMMENT '下单金额',
    PRIMARY KEY (`dt`, `recent_days`, `course_id`)
) COMMENT '各课程交易统计';


# 13)各课程评价统计
DROP TABLE IF EXISTS ads_course_review_stats_by_course;
CREATE TABLE ads_course_review_stats_by_course
(
    `dt`                DATETIME COMMENT '统计日期',
    `recent_days`       BIGINT COMMENT '最近天数,1:最近 1 天,7:最近 7 天,30:最近 30 天',
    `course_id`         VARCHAR(255) COMMENT '课程id',
    `course_name`       VARCHAR(255) COMMENT '课程名称',
    `avg_stars`         BIGINT COMMENT '用户平均评分',
    `review_user_count` BIGINT COMMENT '评价用户数',
    `praise_rate`       DECIMAL(16, 2) COMMENT '好评率',
    PRIMARY KEY (`dt`, `recent_days`, `course_id`)
) COMMENT '各课程评价统计';


# 14)各分类课程试听留存统计
DROP TABLE IF EXISTS ads_sample_retention_stats_by_category;
CREATE TABLE ads_sample_retention_stats_by_category
(
    `dt`                DATETIME COMMENT '统计日期',
    `retention_days`    BIGINT COMMENT '留存天数,1-7 天',
    `category_id`       VARCHAR(255) COMMENT '分类id',
    `category_name`     VARCHAR(255) COMMENT '分类名称',
    `sample_user_count` BIGINT COMMENT '试听人数',
    `retention_rate`    DECIMAL(16, 2) COMMENT '试听留存率',
    PRIMARY KEY (`dt`, `retention_days`, `category_id`)
) COMMENT '各分类课程试听留存统计';


# 15)各学科试听留存统计
DROP TABLE IF EXISTS ads_sample_retention_stats_by_subject;
CREATE TABLE ads_sample_retention_stats_by_subject
(
    `dt`                DATETIME COMMENT '统计日期',
    `retention_days`    BIGINT COMMENT '留存天数,1-7 天',
    `subject_id`        VARCHAR(255) COMMENT '学科id',
    `subject_name`      VARCHAR(255) COMMENT '学科名称',
    `sample_user_count` BIGINT COMMENT '试听人数',
    `retention_rate`    DECIMAL(16, 2) COMMENT '试听留存率',
    PRIMARY KEY (`dt`, `retention_days`, `subject_id`)
) COMMENT '各学科试听留存统计';


# 16)各课程试听留存统计
DROP TABLE IF EXISTS ads_sample_retention_stats_by_course;
CREATE TABLE ads_sample_retention_stats_by_course
(
    `dt`                DATETIME COMMENT '统计日期',
    `retention_days`    BIGINT COMMENT '留存天数,1-7 天',
    `course_id`         VARCHAR(255) COMMENT '课程id',
    `course_name`       VARCHAR(255) COMMENT '课程名称',
    `sample_user_count` BIGINT COMMENT '试听人数',
    `retention_rate`    DECIMAL(16, 2) COMMENT '试听留存率',
    PRIMARY KEY (`dt`, `retention_days`, `course_id`)
) COMMENT '各课程试听留存统计';


# 17)交易综合指标
DROP TABLE IF EXISTS ads_trade_stats;
CREATE TABLE ads_trade_stats
(
    `dt`                 DATETIME COMMENT '统计日期',
    `recent_days`        BIGINT COMMENT '最近天数,1:最近1日,7:最近7天,30:最近30天',
    `order_total_amount` DECIMAL(16, 2) COMMENT '订单总额,GMV',
    `order_count`        BIGINT COMMENT '订单数',
    `order_user_count`   BIGINT COMMENT '下单人数',
    PRIMARY KEY (`dt`, `recent_days`)
) COMMENT '交易综合指标';


# 18)各省份交易统计
DROP TABLE IF EXISTS ads_trade_order_by_province;
CREATE TABLE ads_trade_order_by_province
(
    `dt`                 DATETIME COMMENT '统计日期',
    `recent_days`        BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `province_id`        VARCHAR(10) COMMENT '省份id',
    `province_name`      VARCHAR(30) COMMENT '省份名称',
    `region_id`          VARCHAR(30) COMMENT '大区id',
    `area_code`          VARCHAR(255) COMMENT '地区编码',
    `iso_code`           VARCHAR(255) COMMENT '国际标准地区编码',
    `iso_code_3166_2`    VARCHAR(255) COMMENT '国际标准地区编码',
    `order_count`        BIGINT COMMENT '订单数' ,
    `order_user_count`   BIGINT COMMENT '下单人数',
    `order_total_amount` DECIMAL(16, 2) COMMENT '订单金额',
    PRIMARY KEY (`dt`, `recent_days`, `province_id`, `region_id`, `area_code`, `iso_code`, `iso_code_3166_2`)
) COMMENT '各省份交易统计';


# 19)各试卷平均统计
DROP TABLE IF EXISTS ads_examination_paper_avg_stats;
CREATE TABLE ads_examination_paper_avg_stats
(
    `dt`             DATETIME COMMENT '统计日期',
    `recent_days`    BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `paper_id`       VARCHAR(255) COMMENT '试卷 id',
    `paper_title`    VARCHAR(255) COMMENT '试卷名称',
    `avg_score`      DECIMAL(16, 2) COMMENT '试卷平均分',
    `avg_during_sec` BIGINT COMMENT '试卷平均时长',
    `user_count`     BIGINT COMMENT '试卷用户数',
    PRIMARY KEY (`dt`, `recent_days`, `paper_id`)
) COMMENT '各试卷平均统计';


# 20)最近 1/7/30 日各试卷成绩分布
DROP TABLE IF EXISTS ads_examination_course_avg_stats;
CREATE TABLE ads_examination_course_avg_stats
(
    `dt`             DATETIME COMMENT '统计日期',
    `recent_days`    BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `course_id`      VARCHAR(255) COMMENT '课程id',
    `course_name`    VARCHAR(255) COMMENT '课程名称',
    `avg_score`      DECIMAL(16, 2) COMMENT '平均分',
    `avg_during_sec` BIGINT COMMENT '平均时长',
    `user_count`     BIGINT COMMENT '用户数',
    PRIMARY KEY (`dt`, `recent_days`, `course_id`)
) COMMENT '各课程考试相关指标';


# 21)最近 1/7/30 日各试卷分数分布统计
DROP TABLE IF EXISTS ads_examination_user_count_by_score_duration;
CREATE TABLE ads_examination_user_count_by_score_duration
(
    `dt`             DATETIME COMMENT '统计日期',
    `recent_days`    BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `paper_id`       VARCHAR(255) COMMENT '试卷 id',
    `score_duration` VARCHAR(255) COMMENT '分数区间',
    `user_count`     BIGINT COMMENT '各试卷各分数区间用户数',
    PRIMARY KEY (`dt`, `recent_days`, `paper_id`, `score_duration`)
) COMMENT '各试卷分数分布统计';


# 22)最近 1/7/30 日各题目正确率
DROP TABLE IF EXISTS ads_examination_question_accuracy;
CREATE TABLE ads_examination_question_accuracy
(
    `dt`          DATETIME COMMENT '统计日期',
    `recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `question_id` VARCHAR(255) COMMENT '题目 id',
    `accuracy`    DECIMAL(16, 2) COMMENT '题目正确率',
    PRIMARY KEY (`dt`, `recent_days`, `question_id`)
) COMMENT '各题目正确率';


# 23)单章视频播放情况统计
DROP TABLE IF EXISTS ads_learn_play_stats_by_chapter;
CREATE TABLE ads_learn_play_stats_by_chapter
(
    `dt`           DATETIME COMMENT '统计日期',
    `recent_days`  BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `chapter_id`   VARCHAR(30) COMMENT '章节 id',
    `chapter_name` VARCHAR(200) COMMENT '章节名称',
    `video_id`     VARCHAR(255) COMMENT '视频 id',
    `video_name`   VARCHAR(255) COMMENT '视频名称',
    `play_count`   BIGINT COMMENT '各章节视频播放次数',
    `avg_play_sec` BIGINT COMMENT '各章节视频人均观看时长',
    `user_count`   BIGINT COMMENT '各章节观看人数',
    PRIMARY KEY (`dt`, `recent_days`, `chapter_id`, `video_id`)
) COMMENT '单章视频播放情况统计';


# 24)各课程播放情况统计
DROP TABLE IF EXISTS ads_learn_play_stats_by_course;
CREATE TABLE ads_learn_play_stats_by_course
(
    `dt`           DATETIME COMMENT '统计日期',
    `recent_days`  BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `course_id`    VARCHAR(255) COMMENT '课程id',
    `course_name`  VARCHAR(255) COMMENT '课程名称',
    `play_count`   BIGINT COMMENT '各课程视频播放次数',
    `avg_play_sec` BIGINT COMMENT '各课程视频人均观看时长',
    `user_count`   BIGINT COMMENT '各课程观看人数',
    PRIMARY KEY (`dt`, `recent_days`, `course_id`)
) COMMENT '各课程播放情况统计';


# 25)各课程完课人数统计
DROP TABLE IF EXISTS ads_complete_complete_user_count_per_course;
CREATE TABLE ads_complete_complete_user_count_per_course
(
    `dt`          DATETIME COMMENT '统计日期',
    `recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `course_id`   VARCHAR(255) COMMENT '课程 id',
    `user_count`  BIGINT COMMENT '各课程完课人数',
    PRIMARY KEY (`dt`, `recent_days`, `course_id`)
) COMMENT '各课程完课人数统计';


# 26)完课综合指标
DROP TABLE IF EXISTS ads_complete_complete_stats;
CREATE TABLE ads_complete_complete_stats
(
    `dt`                         DATETIME COMMENT '统计日期',
    `recent_days`                BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `user_complete_count`        BIGINT COMMENT '完课人数',
    `user_course_complete_count` BIGINT COMMENT '完课人次',
    PRIMARY KEY (`dt`, `recent_days`)
) COMMENT '完课综合指标';


# 27)各课程人均完成章节视频数
DROP TABLE IF EXISTS ads_complete_complete_chapter_count_per_course;
CREATE TABLE ads_complete_complete_chapter_count_per_course
(
    `dt`                     DATETIME COMMENT '统计日期',
    `recent_days`            BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
    `course_id`              VARCHAR(255) COMMENT '课程 id',
    `complete_chapter_count` BIGINT COMMENT '各课程用户平均完成章节数',
    PRIMARY KEY (`dt`, `recent_days`, `course_id`)
) COMMENT '各课程人均完成章节视频数';
02、修改datax的jar包

DataX

  1. GitHub - alibaba/DataX: DataX是阿里云DataWorks数据集成的开源版本。
  2. https://github.com/alibaba/DataX/blob/master/mysqlwriter/doc/mysqlwriter.md
  3. https://github.com/alibaba/DataX/blob/master/hdfsreader/doc/hdfsreader.md
[atguigu@node001 ~]$ cd /opt/module/datax/
[atguigu@node001 datax]$ python bin/datax.py -p"-Dexportdir=/warehouse/edu/ads/ads_traffic_stats_by_source/" job/ads_traffic_stats_by_source.json

2023-09-05 10:59:01.854 [job-0] ERROR RetryUtil - Exception when calling callable, 即将尝试执行第1次重试.本次重试计划等待[1000]ms,实际等待[1001]ms, 异常Msg:[Code:[DBUtilErrorCode-10], Description:[连接数据库失败. 请检查您的 账号、密码、数据库名称、IP、Port或者向 DBA 寻求帮助(注意网络环境).].  -  具体错误信息为:com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: Could not create connection to database server.]
2023-09-05 10:59:03.860 [job-0] ERROR RetryUtil - Exception when calling callable, 即将尝试执行第2次重试.本次重试计划等待[2000]ms,实际等待[2000]ms, 异常Msg:[Code:[DBUtilErrorCode-10], Description:[连接数据库失败. 请检查您的 账号、密码、数据库名称、IP、Port或者向 DBA 寻求帮助(注意网络环境).].  -  具体错误信息为:com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: Could not create connection to database server.]
2023-09-05 10:59:07.865 [job-0] ERROR RetryUtil - Exception when calling callable, 即将尝试执行第3次重试.本次重试计划等待[4000]ms,实际等待[4000]ms, 异常Msg:[Code:[DBUtilErrorCode-10], Description:[连接数据库失败. 请检查您的 账号、密码、数据库名称、IP、Port或者向 DBA 寻求帮助(注意网络环境).].  -  具体错误信息为:com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: Could not create connection to database server.]

解决办法:已检查N遍,账号密码没有问题,将/opt/module/datax/plugin/writer/mysqlwriter/libs与/opt/module/datax/plugin/reader/mysqlreader/libs等两个lib目录下的mysql-connector-java-5.1.34.jar包替换为mysql-connector-java-8.0.29.jar。

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

03、ads_traffic_stats_by_source.json文件

经DataX智能分析,该任务最可能的错误原因是:
com.alibaba.datax.common.exception.DataXException: Code:[DBUtilErrorCode-01], Description:[获取表字段相关信息失败.].  - 获取表:ads_traffic_stats_by_source 的字段的元信息时失败. 请联系 DBA 核查该库、表信息. - java.sql.SQLSyntaxErrorException: Unknown column 'channel' in 'field list'
        at com.mysql.cj.jdbc.exceptions.SQLError.createSQLException(SQLError.java:120)
        at com.mysql.cj.jdbc.exceptions.SQLExceptionsMapping.translateException(SQLExceptionsMapping.java:122)
        at com.mysql.cj.jdbc.StatementImpl.executeQuery(StatementImpl.java:1201)
        at com.alibaba.datax.plugin.rdbms.util.DBUtil.getColumnMetaData(DBUtil.java:563)
        at com.alibaba.datax.plugin.rdbms.writer.util.OriginalConfPretreatmentUtil.dealColumnConf(OriginalConfPretreatmentUtil.java:125)
        at com.alibaba.datax.plugin.rdbms.writer.util.OriginalConfPretreatmentUtil.dealColumnConf(OriginalConfPretreatmentUtil.java:140)
        at com.alibaba.datax.plugin.rdbms.writer.util.OriginalConfPretreatmentUtil.doPretreatment(OriginalConfPretreatmentUtil.java:35)
        at com.alibaba.datax.plugin.rdbms.writer.CommonRdbmsWriter$Job.init(CommonRdbmsWriter.java:41)
        at com.alibaba.datax.plugin.writer.mysqlwriter.MysqlWriter$Job.init(MysqlWriter.java:31)
        at com.alibaba.datax.core.job.JobContainer.initJobWriter(JobContainer.java:704)
        at com.alibaba.datax.core.job.JobContainer.init(JobContainer.java:304)
        at com.alibaba.datax.core.job.JobContainer.start(JobContainer.java:113)
        at com.alibaba.datax.core.Engine.start(Engine.java:92)
        at com.alibaba.datax.core.Engine.entry(Engine.java:171)
        at com.alibaba.datax.core.Engine.main(Engine.java:204)

        at com.alibaba.datax.common.exception.DataXException.asDataXException(DataXException.java:33)
        at com.alibaba.datax.plugin.rdbms.util.DBUtil.getColumnMetaData(DBUtil.java:575)
        at com.alibaba.datax.plugin.rdbms.writer.util.OriginalConfPretreatmentUtil.dealColumnConf(OriginalConfPretreatmentUtil.java:125)
        at com.alibaba.datax.plugin.rdbms.writer.util.OriginalConfPretreatmentUtil.dealColumnConf(OriginalConfPretreatmentUtil.java:140)
        at com.alibaba.datax.plugin.rdbms.writer.util.OriginalConfPretreatmentUtil.doPretreatment(OriginalConfPretreatmentUtil.java:35)
        at com.alibaba.datax.plugin.rdbms.writer.CommonRdbmsWriter$Job.init(CommonRdbmsWriter.java:41)
        at com.alibaba.datax.plugin.writer.mysqlwriter.MysqlWriter$Job.init(MysqlWriter.java:31)
        at com.alibaba.datax.core.job.JobContainer.initJobWriter(JobContainer.java:704)
        at com.alibaba.datax.core.job.JobContainer.init(JobContainer.java:304)
        at com.alibaba.datax.core.job.JobContainer.start(JobContainer.java:113)
        at com.alibaba.datax.core.Engine.start(Engine.java:92)
        at com.alibaba.datax.core.Engine.entry(Engine.java:171)
        at com.alibaba.datax.core.Engine.main(Engine.java:204)

/opt/module/datax/job/ads_traffic_stats_by_source.json

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "hdfsreader",
                    "parameter": {
                        "column": [
                            "*"
                        ],
                        "defaultFS": "hdfs://node001:8020",
                        "encoding": "UTF-8",
                        "fieldDelimiter": "\t",
                        "fileType": "text",
                        "nullFormat": "\\N",
                        "path": "${exportdir}"
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "parameter": {
                        "column": [
                            "dt",
                            "recent_days",
                            "source_id",
                            "source_site",
                            "uv_count",
                            "avg_duration_sec",
                            "avg_page_count",
                            "sv_count",
                            "bounce_rate"
                        ],
                        "connection": [
                            {
                                "jdbcUrl": "jdbc:mysql://node001:3306/edu_report?useUnicode=true&characterEncoding=utf-8",
                                "table": [
                                    "ads_traffic_stats_by_source"
                                ]
                            }
                        ],
                        "username": "root",
                        "password": "123456",
                        "writeMode": "replace"
                    }
                }
            }
        ],
        "setting": {
            "errorLimit": {
                "percentage": 0.02,
                "record": 0
            },
            "speed": {
                "channel": 3
            }
        }
    }
}

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

P113

12.2.2 DataX配置文件生成脚本

P114

第13章 数据仓库工作流调度

Apache DolphinScheduler是一个分布式、易扩展的可视化DAG工作流任务调度平台。致力于解决数据处理流程中错综复杂的依赖关系,使调度系统在数据处理流程中开箱即用。

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

P115

第2章 DolphinScheduler部署说明

第3章 DolphinScheduler集群模式部署

3.6 一键部署DolphinScheduler

[atguigu@node001 apache-dolphinscheduler-2.0.3-bin]$ jpsall
================ node001 ================
5360 QuorumPeerMain
2832 NameNode
9296 WorkerServer
3411 JobHistoryServer
5988 RunJar
9668 ApiApplicationServer
6100 RunJar
9414 LoggerServer
3000 DataNode
9545 AlertServer
10540 Jps
7020 NodeManager
================ node002 ================
5296 NodeManager
5984 WorkerServer
6032 LoggerServer
6231 Jps
4745 QuorumPeerMain
5178 ResourceManager
4986 DataNode
================ node003 ================
3985 NodeManager
4658 LoggerServer
4884 Jps
1861 DataNode
3594 QuorumPeerMain
1967 SecondaryNameNode
[atguigu@node001 apache-dolphinscheduler-2.0.3-bin]$ 

P116

3.7 DolphinScheduler启停命令

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

[atguigu@node001 apache-dolphinscheduler-2.0.3-bin]$ cd /opt/module/dolphinScheduler/ds-2.0.3/
[atguigu@node001 ds-2.0.3]$ ll
总用量 60
drwxrwxr-x 2 atguigu atguigu  4096 9月   6 11:21 bin
drwxrwxr-x 5 atguigu atguigu  4096 9月   6 11:21 conf
-rwxrwxr-x 1 atguigu atguigu  5190 9月   6 11:22 install.sh
drwxrwxr-x 2 atguigu atguigu 20480 9月   6 11:22 lib
drwxrwxr-x 2 atguigu atguigu  4096 9月   6 11:23 logs
drwxrwxr-x 2 atguigu atguigu  4096 9月   6 11:22 pid
drwxrwxr-x 2 atguigu atguigu  4096 9月   6 11:22 script
drwxrwxr-x 3 atguigu atguigu  4096 9月   6 11:22 sql
drwxrwxr-x 8 atguigu atguigu  4096 9月   6 11:22 ui
[atguigu@node001 ds-2.0.3]$ cd bin/
[atguigu@node001 bin]$ ll
总用量 20
-rwxrwxr-x 1 atguigu atguigu 6770 9月   6 11:21 dolphinscheduler-daemon.sh
-rwxrwxr-x 1 atguigu atguigu 2427 9月   6 11:21 start-all.sh
-rwxrwxr-x 1 atguigu atguigu 3332 9月   6 11:21 status-all.sh
-rwxrwxr-x 1 atguigu atguigu 2428 9月   6 11:21 stop-all.sh
[atguigu@node001 bin]$ 

node003没有运行WorkerServer,资源不够,将资源改为8g就能运行了,但没必要。

P117

启动hadoop、zookeeper、hive、hive-service2、ds。

  1. [atguigu@node001 ~]$ myhadoop.sh start
  2. [atguigu@node001 ~]$ zookeeper.sh start
  3. [atguigu@node001 ~]$ nohup /opt/module/hive/hive-3.1.2/bin/hive &
  4. [atguigu@node001 ~]$ nohup /opt/module/hive/hive-3.1.2/bin/hive --service hiveserver2 &
  5. [atguigu@node001 ~]$ /opt/module/dolphinScheduler/ds-2.0.3/bin/start-all.sh
[atguigu@node001 ~]$ myhadoop.sh start
 ================ 启动 hadoop集群 ================
 ---------------- 启动 hdfs ----------------
Starting namenodes on [node001]
Starting datanodes
Starting secondary namenodes [node003]
 --------------- 启动 yarn ---------------
Starting resourcemanager
Starting nodemanagers
 --------------- 启动 historyserver ---------------
[atguigu@node001 ~]$ zookeeper.sh start
---------- zookeeper node001 启动 ----------
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper/zookeeper-3.5.7/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
---------- zookeeper node002 启动 ----------
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper/zookeeper-3.5.7/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
---------- zookeeper node003 启动 ----------
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper/zookeeper-3.5.7/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[atguigu@node001 ~]$ nohup /opt/module/hive/hive-3.1.2/bin/hive &
[1] 3741
[atguigu@node001 ~]$ nohup: 忽略输入并把输出追加到"nohup.out"

[atguigu@node001 ~]$ nohup /opt/module/hive/hive-3.1.2/bin/hive --service hiveserver2 &
[2] 3912
[atguigu@node001 ~]$ nohup: 忽略输入并把输出追加到"nohup.out"

[atguigu@node001 ~]$ /opt/module/dolphinScheduler/ds-2.0.3/bin/start-all.sh
node001:default
...

DolphinScheduler工作流运行之后在工作流实例中查不到是什么原因?将node001的运行内存从4G调为8G即可。

P118

第5章 DolphinScheduler进阶

5.1 工作流传参

DolphinScheduler支持对任务节点进行灵活的传参,任务节点可通过${参数名}引用参数值。

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

由此可得,优先级由高到低:本地参数 > 全局参数 > 上游任务传递的参数。

5.1.5 参数优先级

3)结论

(1)本地参数 > 全局参数 > 上游任务传递的参数;

(2)多个上游节点均传递同名参数时,下游节点会优先使用值为非空的参数;

(3)如果存在多个值为非空的参数,则按照上游任务的完成时间排序,选择完成时间最早的上游任务对应的参数。

P119

5.2 引用依赖资源

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

P120

13.2 数据准备

启动hadoop、zookeeper、kafka、maxwell、f1、f2、f3。

P121

13.3 工作流调度实操

[2023-09-06 17:15:26,824] ERROR [Broker id=0] Received LeaderAndIsrRequest with correlation id 1 from controller 1 epoch 33 for partition __consumer_offsets-44 (last update controller epoch 33) but cannot become follower since the new leader -1 is unavailable. (state.change.logger)
[2023-09-06 17:15:26,824] ERROR [Broker id=0] Received LeaderAndIsrRequest with correlation id 1 from controller 1 epoch 33 for partition __consumer_offsets-32 (last update controller epoch 33) but cannot become follower since the new leader -1 is unavailable. (state.change.logger)
[2023-09-06 17:15:26,824] ERROR [Broker id=0] Received LeaderAndIsrRequest with correlation id 1 from controller 1 epoch 33 for partition __consumer_offsets-41 (last update controller epoch 33) but cannot become follower since the new leader -1 is unavailable. (state.change.logger)

[2023-09-06 19:32:27,802] ERROR [Controller id=0 epoch=34] Controller 0 epoch 34 failed to change state for partition __transaction_state-27 from OfflinePartition to OnlinePartition (state.change.logger)
kafka.common.StateChangeFailedException: Failed to elect leader for partition __transaction_state-27 under strategy OfflinePartitionLeaderElectionStrategy(false)
    at kafka.controller.ZkPartitionStateMachine.$anonfun$doElectLeaderForPartitions$7(PartitionStateMachine.scala:424)
    at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
    at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
    at kafka.controller.ZkPartitionStateMachine.doElectLeaderForPartitions(PartitionStateMachine.scala:421)
    at kafka.controller.ZkPartitionStateMachine.electLeaderForPartitions(PartitionStateMachine.scala:332)
    at kafka.controller.ZkPartitionStateMachine.doHandleStateChanges(PartitionStateMachine.scala:238)
    at kafka.controller.ZkPartitionStateMachine.handleStateChanges(PartitionStateMachine.scala:158)
    at kafka.controller.PartitionStateMachine.triggerOnlineStateChangeForPartitions(PartitionStateMachine.scala:74)
    at kafka.controller.PartitionStateMachine.triggerOnlinePartitionStateChange(PartitionStateMachine.scala:59)
    at kafka.controller.KafkaController.onBrokerStartup(KafkaController.scala:536)
    at kafka.controller.KafkaController.processBrokerChange(KafkaController.scala:1594)
    at kafka.controller.KafkaController.process(KafkaController.scala:2484)
    at kafka.controller.QueuedEvent.process(ControllerEventManager.scala:52)
    at kafka.controller.ControllerEventManager$ControllerEventThread.process$1(ControllerEventManager.scala:130)
    at kafka.controller.ControllerEventManager$ControllerEventThread.$anonfun$doWork$1(ControllerEventManager.scala:133)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
    at kafka.metrics.KafkaTimer.time(KafkaTimer.scala:31)
    at kafka.controller.ControllerEventManager$ControllerEventThread.doWork(ControllerEventManager.scala:133)
    at kafka.utils.ShutdownableThread.run(ShutdownableThread.scala:96)
[2023-09-06 19:32:27,805] INFO [Controller id=0 epoch=34] Changed partition __consumer_offsets-22 from OfflinePartition to OnlinePartition with state LeaderAndIsr(leader=1, leaderEpoch=37, isr=List(1), zkVersion=37) (state.change.logger)

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

maxwell 报错: java.lang.RuntimeException: error: unhandled character set ‘utf8mb3‘

  1. maxwell 报错: java.lang.RuntimeException: error: unhandled character set ‘utf8mb3‘_你的482的博客-CSDN博客
  2. Maxwell安装使用 - 掘金

这个问题是因为MySQL从 5.5.3 开始,用 utf8mb4 编码来实现完整的 UTF-8,其中 mb4 表示 most bytes 4,最多占用4个字节。而原来的utf8则被utf8mb3则代替。 一种解决方案是,将MySQL降级,重新安装5.5.3以下的版本。 另一种方法则是修改maxwell源码。 解压打开,找到有问题的类:com.zendesk.maxwell.schema.columndef.StringColumnDef,加上能识别utf8mb3的语句,重新打包。 打包好的maxwell-1.19.0.jar替换maxwell/lib/maxwell-1.19.0.jar,重启即可。

启动hadoop、zookeeper、kafka、maxwell、f1.sh、f2.sh、f3.sh。

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

关闭采集的相关组件:kafka、flume(f1、f2、f3)、maxwell;启动hadoop、hive、zookeeper、dolphinscheduler ...

忘记启动zookeeper了...

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

Error starting ApplicationContext. To display the conditions report re-run your application with 'debug' enabled.
[ERROR] 2023-09-07 14:46:32.033 org.springframework.boot.SpringApplication:[843] - Application run failed
org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name 'monitorServiceImpl': Unsatisfied dependency expressed through field 'registryClient'; nested exception is org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'registryClient': Invocation of init method failed; nested exception is org.apache.dolphinscheduler.registry.api.RegistryException: zookeeper connect timeout

...

datax将数据同步至hdfs里面,mysql_to_hdfs_full.sh;

数据导入到ods层中,hdfs_to_ods_db.sh、

ods_to_dwd.sh。

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

export HADOOP_HOME=/opt/module/hadoop/hadoop-3.1.3
export HADOOP_CONF_DIR=/opt/module/hadoop/hadoop-3.1.3/etc/hadoop
export SPARK_HOME=/opt/module/spark/spark-3.0.0-bin-hadoop3.2
export JAVA_HOME=/opt/module/jdk/jdk1.8.0_212
export HIVE_HOME=/opt/module/hive/hive-3.1.2
export DATAX_HOME=/opt/module/datax

export PATH=$HADOOP_HOME/bin:$SPARK_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$DATAX_HOME/bin:$PATH

串联

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

P122【122_在线教育数仓开发回顾 04:23】

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper

尚硅谷大数据项目《在线教育之离线数仓》笔记007,# 大数据数仓,大数据,离线数仓,ds,hadoop,hive,kafka,zookeeper文章来源地址https://www.toymoban.com/news/detail-699361.html

到了这里,关于尚硅谷大数据项目《在线教育之离线数仓》笔记007的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 尚硅谷大数据项目《在线教育之采集系统》笔记002

    视频地址:尚硅谷大数据项目《在线教育之采集系统》_哔哩哔哩_bilibili 目录 P032 P033 P033 P034 P035 P036 P032 P033 P033 2023-07-26 11:13:42,136 (kafka-producer-network-thread | producer-1) [WARN - org.apache.kafka.clients.NetworkClient.processDisconnection(NetworkClient.java:671)] [Producer clientId=producer-1] Connection to node -

    2024年02月15日
    浏览(40)
  • 尚硅谷 谷粒学院 毕业设计 在线教育 部署文档

    本课题研究的基于SpringCloud的K12在线学习网的设计与实现的主要功能包括前端系统,后端管理系统等两大主模块,主模块下包括课程中心、讲师中心、直播、用户中心、微信登录、统计分析、banner管理、权限管理等10个模块。系统实现使用了Spring三剑客中的SpringCloud作为后端微

    2023年04月16日
    浏览(40)
  • 数据分析实战 205 :项目分析思路 —— 某在线教育机构经营分析

    版权声明:本文为博主原创文章,未经博主允许不得转载。 1.3.1 确认毛利额数据异常的问题 1.3.2 提升毛利额的方案 版权声明:本文为博主原创文章,未经博主允许不得转载。

    2023年04月25日
    浏览(50)
  • 基于JAVA+Springboot+Thymeleaf前后端分离项目:在线教育视频点播学习系统设计与实现

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年02月19日
    浏览(50)
  • Springboot+Vue项目-基于Java+MySQL的在线视频教育平台系统(附源码+演示视频+LW)

    大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:Java毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计 🌎微信小程序毕业设计 开发语言:Java 框架:Springboot+Vue JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat12 开发软件

    2024年04月13日
    浏览(44)
  • 在线视频教育平台|基于Springboot的在线视频教育平台系统设计与实现(源码+数据库+文档)

    在线视频教育平台 目录 基于Springboot的在线视频教育平台系统设计与实现 一、前言 二、系统设计 三、系统功能设计  1、前台: 2、后台 用户功能模块 教师功能模块 四、数据库设计  五、核心代码  六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍 :✌

    2024年04月09日
    浏览(85)
  • 小象课堂在线授课教育系统

    此项目包含后端全部代码,前端包括后台和web界面的源码,数据库用的mysql,可当作课设或者毕设,还可写入自己的简历中 web界面展示: 前端后台界面展示: 用户管理 课程管理 内容配置 订单管理 系统管理 系统监控

    2024年02月12日
    浏览(44)
  • 基于SpringBoot的在线教育平台系统

    基于SpringBoot+Vue的线教育平台系统,前后端分离 开发语言:Java 数据库:MySQL 技术:SpringBoot、Vue、Mybaits Plus、ELementUI 工具:IDEA/Ecilpse、Navicat、Maven 【主要功能】 角色:管理员、学生、老师 学生:查询课程、收藏课程、播放视频、下载资料、个人信息管理等。 教师:课程管

    2024年02月09日
    浏览(44)
  • 一个开源的分布式在线教育系统

    大家好,我是 Java陈序员 。 今天给大家介绍一个开源的 分布式在线教育系统 ,支持课程在线播放、课程购买等功能。 关注微信公众号:【Java陈序员】,获取 开源项目分享、AI副业分享、超200本经典计算机电子书籍等。 roncoo-education —— 一个分布式在线教育系统。目前主要

    2024年03月14日
    浏览(61)
  • 在线教育知识付费源码带app +小程序

    在线教育知识付费源码是一种用于构建知识付费平台的软件源代码。它可以帮助企业或个人快速搭建自己的知识付费平台,通过销售知识内容实现收入。 知识付费平台是指提供付费访问付费知识内容的在线平台,包括课程、教程、电子书、音频、视频等。知识付费源码提供了

    2024年01月24日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包