举例说明PyTorch函数torch.cat与torch.stack的区别

这篇具有很好参考价值的文章主要介绍了举例说明PyTorch函数torch.cat与torch.stack的区别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、torch.cat与torch.stack的区别

torch.cat用于在给定的维度上连接多个张量,它将这些张量沿着指定维度堆叠在一起。

torch.stack用于在新的维度上堆叠多个张量,它会创建一个新的维度,并将这些张量沿着这个新维度堆叠在一起。

二、torch.cat

举例说明PyTorch函数torch.cat与torch.stack的区别,pytorch,人工智能,python

Example1:

import torch

tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6], [7, 8]])

result1 = torch.cat((tensor1, tensor2), dim=0)
result2 = torch.cat((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
torch.Size([4, 2])
tensor([[1, 2],
        [3, 4],
        [5, 6],
        [7, 8]])
torch.Size([2, 4])
tensor([[1, 2, 5, 6],
        [3, 4, 7, 8]])

三、torch.stack

举例说明PyTorch函数torch.cat与torch.stack的区别,pytorch,人工智能,python文章来源地址https://www.toymoban.com/news/detail-699393.html

Example1:

import torch

tensor1 = torch.tensor([1, 2, 3])
tensor2 = torch.tensor([4, 5, 6])

result1 = torch.stack((tensor1, tensor2), dim=0)
result2 = torch.stack((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
torch.Size([2, 3])
tensor([[1, 2, 3],
        [4, 5, 6]])
torch.Size([3, 2])
tensor([[1, 4],
        [2, 5],
        [3, 6]])

Example2:

import torch

tensor1 = torch.tensor([[1, 2], [3, 4], [5, 6]])
tensor2 = torch.tensor([[7, 8], [9, 10], [11, 12]])
tensor3 = torch.tensor([[13, 14], [15, 16], [17, 18]])

result1 = torch.stack((tensor1, tensor2, tensor3), dim=0)
result2 = torch.stack((tensor1, tensor2, tensor3), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 3,  4],
         [ 5,  6]],

        [[ 7,  8],
         [ 9, 10],
         [11, 12]],

        [[13, 14],
         [15, 16],
         [17, 18]]])
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 7,  8],
         [13, 14]],

        [[ 3,  4],
         [ 9, 10],
         [15, 16]],

        [[ 5,  6],
         [11, 12],
         [17, 18]]])

到了这里,关于举例说明PyTorch函数torch.cat与torch.stack的区别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【pytorch】torch.cdist使用说明

    torch.cdist的使用介绍如官网所示, 它是批量计算两个向量集合的距离。 其中, x1和x2是输入的两个向量集合。 p 默认为2,为欧几里德距离。 它的功能上等同于 scipy.spatial.distance.cdist (input,’minkowski’, p=p) 如果x1的shape是 [B,P,M], x2的shape是[B,R,M],则cdist的结果shape是 [B,P,R] x1一般

    2024年01月15日
    浏览(45)
  • pytorch中torch.roll用法说明

    torch.roll(input, shifts, dims=None)  这个函数是用来移位的,是顺移。input是咱们要移动的tensor向量,shifts是要移动到的位置,要移动去哪儿,dims是值在什么方向上(维度)去移动。比如2维的数据,那就两个方向,横着或者竖着。最关键的一句话,所有操作针对的是 第一行或者第一列

    2024年04月24日
    浏览(26)
  • 【工具】pytorch和torch的关系与区别

    官方认为 :两者最大的区别就是Pytorch重新设计了model模型和intermediate中间变量的关系 PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。使用 Python 编写。 Torch是一个基于BSD License的开源的机器学习的框架 都是一

    2024年02月15日
    浏览(36)
  • 【pytorch】torch.gather()函数

    2024年02月06日
    浏览(36)
  • 【Pytorch】torch.max() 函数详解

    参数: input (Tensor) – 输入张量 返回输入张量所有元素中的最大值。 输出结果: 返回张量 input 在压缩指定维度 dim 时的最大值及其下标。 输出结果: 返回两张量 input 和 other_input 在对应位置上的最大值形成的新张量。 输出结果: 详解 torch.max 函数

    2024年01月23日
    浏览(47)
  • Pytorch函数——torch.gather详解

    在学习强化学习时,顺便复习复习pytorch的基本内容,遇到了 torch.gather() 函数,参考图解PyTorch中的torch.gather函数 - 知乎 (zhihu.com)进行解释。 pytorch官网对函数给出的解释: 即input是一个矩阵,根据dim的值,将index的值替换到不同的维度的 索引 ,当dim为0时,index替代i的值,成为

    2024年01月18日
    浏览(40)
  • tensor是pytorch的核心,那torch.tensor和torch.Tensor区别是?

    从本节课程开始我们将正式开启pytorch的学习了,在深度学习框架中有一个重要的概念叫做张量,它是pytorch的基本操作单位,要想创建tensor有很多的方式,但是有两个torch.tensor和torch.Tensor容易混淆,本节课程对二者进行总结。 torch.Tensor是默认的tensor类型(torch.FloatTensor)的简

    2024年04月24日
    浏览(37)
  • 深入浅出Pytorch函数——torch.exp

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.exp · 深入浅出TensorFlow2函数——tf.math.exp · 深入浅出Pytorch函数——torch.exp · 深入浅出PaddlePaddle函数——paddle.exp 对输入 input 逐元素进行以自然数 e e e 为底指数运算。 语法 参数 input :[ Te

    2024年02月11日
    浏览(50)
  • 深入浅出Pytorch函数——torch.tensor

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出TensorFlow2函数——tf.constant · 深入浅出Pytorch函数——torch.tensor · 深入浅出Pytorch函数——torch.as_tensor · 深入浅出Pytorch函数——torch.Tensor · 深入浅出PaddlePaddle函数——paddle.to_tensor 基于 data 构建一个没有梯度历史

    2024年02月04日
    浏览(105)
  • 深入浅出Pytorch函数——torch.squeeze

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.squeeze · 深入浅出Pytorch函数——torch.unsqueeze 将输入张量形状为1的维度去除并返回。比如输入向量的形状为 A × 1 × B × 1 × C × 1 × D Atimes1times Btimes1times Ctimes1times D A × 1 × B × 1 × C × 1 ×

    2024年02月16日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包