【CUDA OUT OF MEMORY】【Pytorch】计算图与CUDA OOM

这篇具有很好参考价值的文章主要介绍了【CUDA OUT OF MEMORY】【Pytorch】计算图与CUDA OOM。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

计算图与CUDA OOM

在实践过程中多次碰到了CUDA OOM的问题,有时候这个问题是很好解决的,有时候DEBUG一整天还是头皮发麻。

最近实践对由于计算图积累导致CUDA OOM有一点新的看法,写下来记录一下。包括对计算图的一些看法和一个由于计算图引发错误的简化实例记录。

本人能力有限,认识片面如果犯了错误希望大家指教!

计算图的存储

计算图是pytorch进行梯度反向传播核心,计算图是在程序运行过程中动态产生的,当tensor变量赋予了requires_grad=True的属性时,torch会自动记录其参与的计算并形成计算图保存在显存中。

敲重点:计算图是会吃显存的! 本来想截下来描述一下计算图是长什么样的,至少是概念的表述一下,结果去学习了一圈发现:和我想的完全不一样!附上学习链接:传送门。更关键的是我还没完全看懂学会(🐶),有没有大大学会了教我一下,不甚感激!

总的来说一个tensor它内部包含的grad_fn别有洞天,首先grad_fn也是作为一个节点在计算图中的(其在pytorch的C艹中是Node的子类),grad_fn不仅是记录了这个tensor是被什么数学符号计算来的,它还暗搓搓记录了这个tensor是是从哪些数字里头窜出来的,以及其和其他grad_fn的py友谊,还有被包含在其内部context中的信息,我偷那个学习链接的一张图展示一下一个计算图的形态,借花献佛,展示一下grad_fn偷偷摸摸用你的卡干了啥事情。
【CUDA OUT OF MEMORY】【Pytorch】计算图与CUDA OOM,pytorch,人工智能,python

BTW,提几个小知识点

  • 我们常用的detach()方法,就是通过把tensor的grad_fn扬了从而把tensor从计算图中剥离出来。
>>> x
tensor([1.], requires_grad=True)
>>> y = x+1
>>> y.grad_fn
<AddBackward0 object at 0x7f8306e68b50>
>>> y.detach().grad_fn is None
True
  • 关于*.backward(retain_graph=True)的问题,backwardretain_graph默认是False,其含义是经过默认的*.backward()之后,计算图会被清空从而释放其占用的显存。和detach不一样的是,grad_fn还是那个grad_fn只不过它悄咪咪维持的友谊被杀掉了,如下:
>>> x
tensor([1.], requires_grad=True)
>>> y = x+1; y.grad_fn
<AddBackward0 object at 0x7f8306e68b50>
>>> y.backward(retain_graph=False)
>>> y.grad_fn
<AddBackward0 object at 0x7f8306e68b50>
  • 续上面一点的内容,但是内容包含我瞎猜的成分(🐶),我们猜测一下backward杀掉了grad_fn的什么东西。一般的,我们认为当retain_graph=False的时候,我们只能backward()一次,因为计算图会被清空,第二次尝试反向传播会造成错误。但其实不然!如下实验例子1的尝试,我们连续backwrad并没有报错。AMAZING啊!。进一步的我们进行例子2的实验,我们只是简单的让前向多了一个乘法计算,然后另z反向传播两次,这回顺理成章的报错,同时报错之后我们再次反传y,我们发现反传y又不会报错。我猜测:backward()会清楚grad_fn节点和其他grad_fn的联系,因此zgrad_fn不能联系到ygrad_fn了,于是第二次z.backward()报错,但是y直接和叶子x连接,不需要其他的grad_fn朋友也能自己和自己玩。
例子1:
>>> x
tensor([1.], requires_grad=True)
>>> y = x+1
>>> y.backward(retain_graph=False);y.backward()
返回没有报错!
---------------------------------------------------------------
例子2:
>>> x
tensor([1.], requires_grad=True)
>>> y=x+1;z=2*y #前向过程多了一个乘法
>>> z.backward(retain_graph=False)
>>> z.backward()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/**/opt/anaconda3/lib/python3.8/site-packages/torch/_tensor.py", line 487, in backward
    torch.autograd.backward(
  File "/Users/**/opt/anaconda3/lib/python3.8/site-packages/torch/autograd/__init__.py", line 200, in backward
    Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.
>>>y.backward()
返回没有报错

一个由于没处理好计算图导致OOM的例子

import torch,time
l1 = torch.nn.Linear(1000,1000).cuda()
l2 = torch.nn.Linear(1000,1000).cuda()
memory = []

for _ in range(10000000):
	time.sleep(0.01)
	data_input = torch.rand(1000).cuda()
	output = l1(l2(data_input))
	output.backward(retain_graph=True) #此行与报错无关 
	memroy.append(output.cpu()) 
	#memory存储的内容通过.cpu()转移在主存上,
	#但是与output相关联的l1,l2的计算图依旧停留在显存中,并在循环中一直积累撑爆显存。
	...some other operations...

这个例子中,由于每个output不能被正常清除计算图显存,最终导致OOM。

这个例子是某次实践的超级简化版,如果只看这个例子的话,其实只要把最后一行改写成

memory.append(output.detach().cpu())

就会由于output在每次循环后失去引用(detach()创建了新的变量)从而被回收,计算图被自动清空避免OOM。文章来源地址https://www.toymoban.com/news/detail-699396.html

到了这里,关于【CUDA OUT OF MEMORY】【Pytorch】计算图与CUDA OOM的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 解决Fastjson2 oom(Out Of Memory),支持大对象(LargeObject 1G)json操作

    在使用Fastjson中的 JSON.toJSONString时,如果对象数据太大(64M)会出现Out Of Memory,查看源码发现为JSONWriter中的判断代码  其中maxArraySize默认最大为64M,如果超过了就会抛出oom错误  如果fastjson过多的使用内存,也可能导致java堆内存溢出,所以这里建议控制好json对象大小,避免过多过大

    2024年02月12日
    浏览(37)
  • CUDA报错:Out of Memory

    如果报错里提示Pytorch reserved的内存远大于Already allocated的内存,那么就是因为分配显存时单位过大,导致出现大量内存碎片无法继续分配(与操作系统内存管理同理)。 我们可以限制一次分配的最大单位来解决这个问题。 随后代码便可正常运行了。

    2024年02月15日
    浏览(57)
  • torch.cuda.OutOfMemoryError: CUDA out of memory.

    训练清华ChatGLM-6B时报错, 原因是显存不够 torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB (GPU 0; 23.70 GiB total capacity; 4.37 GiB already allocated; 64.81 MiB free; 4.37 GiB reserved in total by PyTorch) If reserved memory is allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentatio

    2024年02月06日
    浏览(47)
  • 报错解决:RuntimeError: CUDA out of memory.

    在进行深度学习的模型训练时,经常会遇到显存溢出的报错: RuntimeError: CUDA out of memory. 输出如下图所示: 打开一个终端,输入以下命令查看GPU使用情况: 输出如下图所示: 使用nvidia-htop可以进一步查看更为详细的内容。 nvidia-htop:A tool for enriching the output of nvidia-smi. 可以通

    2024年02月12日
    浏览(60)
  • Pycharm报错torch.cuda.OutOfMemoryError: CUDA out of memory.

    报错 做深度学习相关的实验,可以看到我的显卡内存很小(哭了,不过我有时候是在别的电脑上做的,那个电脑比这个好用),网上搜到的说的 max_split_size_mb:128 这个方法我贴到我代码上之后没有效果。 因为我在这个电脑上做的是主实验后面的一些对比实验,也就是代码中很

    2024年02月05日
    浏览(45)
  • 部署stable diffusion 错误torch.cuda.OutOfMemoryError: CUDA out of memory.

    以来安装完毕,开始执行web_ui.bat 错误截图:  猜测原因:GPU用错了 webUI.py加一行代码 在此启动web_ui.bat,成功打开网页页面

    2024年02月11日
    浏览(50)
  • RuntimeError: CUDA out of memory.【多种场景下的解决方案】

    RuntimeError: CUDA out of memory.【多种场景下的解决方案】 🌈 个人主页:高斯小哥 🔥 高质量专栏:【Matplotlib之旅:零基础精通数据可视化】 🏆🏆关注博主,随时获取更多关于深度学习、PyTorch、Python领域的优质内容!🏆🏆   随着深度学习的繁荣发展,GPU已成为推动这一浪

    2024年02月22日
    浏览(51)
  • 【已解决】探究CUDA out of memory背后原因,如何释放GPU显存?

    研究过深度学习的同学,一定对类似下面这个CUDA显存溢出错误不陌生 RuntimeError: CUDA out of memory. Tried to allocate 916.00 MiB (GPU 0; 6.00 GiB total capacity; 4.47 GiB already allocated; 186.44 MiB free; 4.47 GiB reserved in total by PyTorch) 本文探究CUDA的内存管理机制,并总结该问题的解决办法 在实验开始前

    2023年04月20日
    浏览(103)
  • Stable Diffusion WebUI内存不够爆CUDA Out of memory怎么办?

    在我们运行SD的时候,我们经常会爆CUDA Out of memory。 我们应该怎么办呢? 这是因为我们的显存或者内存不够了。 如果你是用cpu来跑图的则表示内存不够,这个时候就需要换个大点的内存了。 如果你是用gpu来跑图的就说明你显存不够用咯,这时候咋办呢? 下面我将一一述说解

    2024年02月08日
    浏览(129)
  • RuntimeError:CUDA out of memory.Tried to allocate 20.00MiB.

    这是我遇到的问题,刚开始的时候怎么也解决不了。 然后我去搜了一下解决方法,具体方法如下: 方法一: 仅需减小batchsize 改文件的配置cfg的batchsize=1,一般在cfg文件下的查找batch或batchsize,将batchsize调小后,再次运行,类似于改下面 方法二 :  上述方法还没解决,不改

    2023年04月11日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包