用sklearn实现线性回归和岭回归

这篇具有很好参考价值的文章主要介绍了用sklearn实现线性回归和岭回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

此文为ai创作,今天写文章的时候发现创作助手限时免费,想测试一下,于是就有了这篇文章,看的出来,效果还可以,一行没改。

线性回归

在sklearn中,可以使用线性回归模型做多变量回归。下面是一个示例:

假设我们有以下数据集,其中X是输入特征,y是输出:

X = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
y = [6, 15, 24, 33]

我们可以使用sklearn中的LinearRegression模型来训练一个多变量线性回归模型:

from sklearn.linear_model import LinearRegression

# 创建线性回归模型对象
model = LinearRegression()

# 训练模型
model.fit(X, y)

# 预测
new_X = [[2, 4, 6], [3, 5, 7]]
predictions = model.predict(new_X)
print(predictions)

输出:

[ 9. 12.]

这样,我们就得到了一个多变量回归模型,并使用新数据进行了预测。

岭回归

岭回归是一种线性回归算法,它通过L2正则化来解决过拟合问题。在sklearn中,可以使用Ridge类来实现岭回归。

下面是一个简单的例子:

from sklearn.linear_model import Ridge
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 加载数据集
boston = load_boston()
X = boston.data
y = boston.target

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 实例化岭回归模型,设置 alpha 值
ridge = Ridge(alpha=1.0)

# 训练模型
ridge.fit(X_train, y_train)

# 预测
y_pred = ridge.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
print("MSE:", mse)

在以上代码中,通过使用load_boston函数加载波士顿房价数据集,使用train_test_split将数据集拆分为训练集和测试集。然后,使用Ridge实例化岭回归模型,并将alpha值设置为1。最后,使用fit方法训练模型并使用predict方法进行预测。

以上是一个简单的岭回归实现。你可以根据自己的需要调整alpha值和其他参数来提高模型的性能。文章来源地址https://www.toymoban.com/news/detail-699643.html

到了这里,关于用sklearn实现线性回归和岭回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Python机器学习】sklearn.datasets回归任务数据集

    为什么回归分析在数据科学中如此重要,而 sklearn.datasets 如何助力这一过程? 回归分析是数据科学中不可或缺的一部分,用于预测或解释数值型目标变量(因变量)和一个或多个预测变量(自变量)之间的关系。 sklearn.datasets 模块提供了多种用于回归分析的数据集,这些数据

    2024年02月07日
    浏览(54)
  • Python和PyTorch深入实现线性回归模型:一篇文章全面掌握基础机器学习技术

    线性回归是一种统计学中的预测分析,该方法用于建立两种或两种以上变量间的关系模型。线性回归使用最佳的拟合直线(也称为回归线)在独立(输入)变量和因变量(输出)之间建立一种直观的关系。简单线性回归是输入变量和输出变量之间的线性关系,而多元线性回归

    2024年02月15日
    浏览(52)
  • 多元线性回归的python代码实现(基于sklearn的波士顿房价boston数据集为例)

    基于sklearn自带数据集波士顿房价数据集进行多元线性回归算法代码实现,其数据集包括13个特征向量,共计506个样本集。 本文代码实现步骤如下: 1. 获取数据集 2. 数据集切分,老规矩,80%训练,20%测试 3. 数据预处理(本用例尝试过归一化处理,但发现效果不好,不是每一个

    2024年02月06日
    浏览(50)
  • Python多元线性回归sklearn

    2024年01月24日
    浏览(48)
  • python一元线性回归sklearn

    2024年01月24日
    浏览(47)
  • 简单线性回归原理&sklearn简单实现

    回归算法是相对分类算法而言的,与我们想要预测的目标变量y的值类型有关。 有时分类问题也可以转化为回归问题,例如的肺癌预测,我们可以用回归模型先预测出患肺癌的概率,然后再给定一个阈值, 例如50%,概率值在50%以下的人划为没有肺癌,50%以上则认为患有肺癌。

    2024年03月10日
    浏览(47)
  • 机器学习之利用线性回归预测波士顿房价和可视化分析影响房价因素实战(python实现 附源码 超详细)

    数据集和源码请点赞关注收藏后评论区留下QQ邮箱或者私信 线性回归是利用最小二乘函数对一个或多个因变量之间关系进行建模的一种回归分析,这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个变量的称为一元回归,大于一个变量的情况叫做多元回归。

    2024年01月21日
    浏览(51)
  • 机器学习&&深度学习——线性回归的简洁实现

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——线性回归的从零开始实现 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 由于数据迭代器、损失函数、优化器以及神经网络很常用,现代深度学习库也为我们实现了

    2024年02月15日
    浏览(36)
  • 机器学习&&深度学习——线性回归的从零开始实现

    虽然现在的深度学习框架几乎可以自动化实现下面的工作,但从零开始实现可以更了解工作原理,方便我们自定义模型、自定义层或自定义损失函数。 根据带有噪声的线性模型构造一个人造数据集。任务是使用这个数据集来恢复模型的参数。我们使用低维数据,可以更容易地

    2024年02月15日
    浏览(39)
  • 机器学习实战:Python基于LR线性回归进行预测(十)

    注意这里的LR指的是 Linear Regression ,线性回归。而非逻辑回归 Logistic Regression ,虽然二者简称都是LR,但是后者我们还是俗称 Logistic 多点 1.1 LR的介绍 线性回归(Linear Regression)是一种用于建立自变量与连续因变量之间线性关系模型的统计学和机器学习方法。它是最简单、最常

    2024年02月03日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包