LA@二次型@标准化相关原理和方法

这篇具有很好参考价值的文章主要介绍了LA@二次型@标准化相关原理和方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

标准化方法

正交变换法🎈

  • 二次型可标准化定理的证明过程给出使用二次型标准化的步骤

  • 该方法通过计算出一个特定的正交矩阵 P \bold P P,并用 P \bold P P来进行线性变换实现得到标准形

求矩阵的特征值
  • 求出 n n n元二次型矩阵 A \bold A A的全部特征值 λ i \lambda_i λi,它们分别是 n i n_i ni重根(而且对应 n i n_i ni个线性无关的特征向量)

    • ∑ i s n i = n \sum_{i}^{s}n_i=n isni=n, i = 1 , 2 , ⋯   , s i=1,2,\cdots,s i=1,2,,s(表示A有s个互异的特征根)
求各特征值对应的线性无关特征向量组
  • 对每个 λ i \lambda_i λi求出对应的齐次线性方程组 ( λ i E − A ) x = 0 \bold{(\lambda_i{E}-A)x=0} (λiEA)x=0的基础解系 Φ i \Phi_i Φi(包含 n i n_i ni个线性无关向量)

    • Φ i : α 1 ( i ) , ⋯   , α n i ( i ) \Phi_{i}:\alpha_1^{(i)},\cdots,\alpha_{n_i}^{(i)} Φi:α1(i),,αni(i), i i i表示向量(组)属于特征值 λ i \lambda_i λi,包含 n i n_i ni个线性无关的向量
正交化各个向量组
  • 分别对 Φ 1 , ⋯   , Φ s \Phi_1,\cdots,\Phi_{s} Φ1,,Φs正交化得到向量组 Ψ = ϕ 1 , ⋯   , ϕ s \Psi=\phi_1,\cdots,\phi_{s} Ψ=ϕ1,,ϕs( ϕ i 是 Φ i \phi_i是\Phi_i ϕiΦi正交化后的向量组)

  • 令矩阵 P = ( Ψ ) \bold P=(\Psi) P=(Ψ),则 P \bold P P能使 P T A P = Λ \bold{P^{T}AP=\Lambda} PTAP=Λ= diag ( λ i , ⋯   , λ n ) \text{diag}(\lambda_i,\cdots,\lambda_n) diag(λi,,λn)

  • 正交线性变换 x = P y \bold{x=Py} x=Py就是所求的线性变换

    • y = ( y 1 , ⋯   , y n ) T \bold y=(y_1,\cdots,y_n)^{T} y=(y1,,yn)T

    • f ( x 1 , ⋯   , x n ) → x = Q y g ( y 1 , ⋯   , y n ) = ∑ i = 1 n λ i y i 2 f(x_1,\cdots,x_n)\xrightarrow{x=Qy}g(y_1,\cdots,y_n)=\sum\limits_{i=1}^{n}\lambda_iy_i^2 f(x1,,xn)x=Qy g(y1,,yn)=i=1nλiyi2

配方法

  • 用正交变换化二次型成标准形,具有保持几何形状不变的优点
  • 如果不局限于用正交变换,还可以有多种方法确定一个一般的可逆矩阵来标准化二次型
  • 例如拉格朗日配方法,其原理和依据参见二次型可标准化定理的配方角度证明过程
步骤
  • f ( x 1 , ⋯   , x 2 ) = ∑ i = 2 n ∑ j = 2 n a i j x i x j f(x_1,\cdots,x_2)=\sum_{i=2}^{n}\sum_{j=2}^{n}a_{ij}x_ix_j f(x1,,x2)=i=2nj=2naijxixj, a j i = a i j a_{ji}=a_{ij} aji=aij包含 x i x_i xi的平方项(设为 a i i x i 2 a_{ii}x_i^2 aiixi2),那么将 x i x_i xi相关的项集中求和,记为 u i = ∑ j ≠ i n 2 a i j x i x j u_i=\sum_{j\neq{i}}^{n}2a_{ij}x_{i}x_{j} ui=j=in2aijxixj;对 η i = a i i x i 2 + u i \eta_i=a_{ii}x_i^2+u_i ηi=aiixi2+ui进行配方,得到形如 η i = b i ( x i + ⋯   ) 2 + ⋯ \eta_{i}=b_{i}(x_{i}+\cdots)^{2}+\cdots ηi=bi(xi+)2+,从而 f = η i + v i f=\eta_i+v_i f=ηi+vi= b i ( x i i + ⋯   ) 2 + ⋯ + v i b_{i}(x_{ii}+\cdots)^{2}+\cdots+v_i bi(xii+)2++vi(1),
    • 其中 v i = f − η i = ∑ r , j ≠ i a r j x r x j v_i=f-\eta_i=\sum_{r,j\neq{i}}a_{rj}x_rx_j vi=fηi=r,j=iarjxrxj
    • 易知,(1)式中只有第一项 b i ( x i + ⋯   ) 2 b_{i}(x_{i}+\cdots)^{2} bi(xi+)2包含 x i i x_{ii} xii,其余项不包含 x i i x_{ii} xii
    • 不断地对(1)中的下一个平方项进行配方(理论分析中已经指出,(1)包含了所有 x i x_i xi的平方项 i = 1 , ⋯   , n i=1,\cdots,n i=1,,n,最终所有 x i , i = 1 , ⋯   , n x_i,i=1,\cdots,n xi,i=1,,n都会被配方成形如 b i ( x i i + ⋯   ) 2 b_{i}(x_{ii}+\cdots)^2 bi(xii+)2的形式
    • 构造线性变换: y i = x i + ⋯ y_i=x_{i}+\cdots yi=xi+,(2) ( i = 1 , ⋯   , n ) (i=1,\cdots,n) (i=1,,n);求解该线性方程组,得到线性变换 x i = y i − ⋯ x_i=y_i-\cdots xi=yi(3)
    • 那么线性变换(3)就能够使 f f f标准化
  • f f f中不包含任意平方项,但是包含某个 a i j ≠ 0 a_{ij}\neq{0} aij=0, i ≠ j i\neq{j} i=j则运用线性变换
    • x i = y i − y j x_i=y_{i}-y_{j} xi=yiyj
    • x j = y i + y j x_j=y_i+y_j xj=yi+yj
    • x k = y k x_k=y_k xk=yk, k = 1 , ⋯   , n k=1,\cdots,n k=1,,n k ≠ i , j k\neq{i,j} k=i,j
    • 代入该线性变换到 f f f可以将此类情况转换为第一种情况(包含平方项)求解
  • f ( x 1 , x 2 , x 3 ) = 4 ( x 1 2 + x 2 2 + x 3 + x 1 x 2 + x 1 x 3 + x 2 x 3 ) f(x_1,x_2,x_3)=4(x_1^2+x_2^2+x^3+x_1x_2+x_1x_3+x_2x_3) f(x1,x2,x3)=4(x12+x22+x3+x1x2+x1x3+x2x3)

  • 配方得到(0)
    f ( x 1 , x 2 , x 3 ) = 4 ( x 1 2 + x 1 ( x 2 + x 3 ) + x 2 2 + x 3 2 + x 2 x 3 ) = 4 [ ( x 1 + 1 2 x 1 ( x 2 + x 3 ) ) 2 − 1 4 ( x 2 + x 3 ) 2 + x 2 2 + x 3 2 + x 2 x 3 ] = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 − ( x 2 2 + 2 x 2 x 3 + x 3 2 ) + 4 ( x 2 2 + x 3 2 + x 2 x 3 ) = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 x 2 2 + 3 x 3 2 + 2 x 2 x 3 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 2 + 2 3 x 2 x 3 ) + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 [ ( x 2 + 1 3 x 3 ) 2 − 1 9 x 3 2 ] + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 + 1 3 x 3 ) 2 − 1 3 x 3 2 + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 + 1 3 x 3 ) 2 + 8 3 x 3 2 \begin{aligned} f(x_1,x_2,x_3) &=4(x_1^2+x_1(x_2+x_3)+x_2^2+x_3^2+x_2x_3) \\&=4[(x_1+\frac{1}{2}x_1(x_2+x_3))^2-\frac{1}{4}(x_2+x_3)^2+x_2^2+x_3^2+x_2x_3] \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2-(x_2^2+2x_2x_3+x_3^2)+4(x_2^2+x_3^2+x_2x_3) \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3x_2^2+3x_3^2+2x_2x_3 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2^2+\frac{2}{3}x_2x_3)+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3[(x_2+\frac{1}{3}x_3)^2-\frac{1}{9}x_3^2]+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2+\frac{1}{3}x_3)^2-\frac{1}{3}x_3^2+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2+\frac{1}{3}x_3)^2+\frac{8}{3}x_3^2 \end{aligned} f(x1,x2,x3)=4(x12+x1(x2+x3)+x22+x32+x2x3)=4[(x1+21x1(x2+x3))241(x2+x3)2+x22+x32+x2x3]=4(x1+21(x2+x3))2(x22+2x2x3+x32)+4(x22+x32+x2x3)=4(x1+21(x2+x3))2+3x22+3x32+2x2x3=4(x1+21(x2+x3))2+3(x22+32x2x3)+3x32=4(x1+21(x2+x3))2+3[(x2+31x3)291x32]+3x32=4(x1+21(x2+x3))2+3(x2+31x3)231x32+3x32=4(x1+21(x2+x3))2+3(x2+31x3)2+38x32

  • { y 1 = x 1 + 1 2 ( x 2 + x 3 ) y 2 = x 2 + 1 3 x 3 y 3 = x 3 \begin{cases}y_1=&x_1+\frac{1}{2}(x_2+x_3)\\y_2=&x_2+\frac{1}{3}x_3\\y_3=&x_3\end{cases} y1=y2=y3=x1+21(x2+x3)x2+31x3x3(1);则 f ( x 1 , x 2 , x 3 ) = g ( y 1 , y 2 , y 3 ) = 4 y 1 2 + 3 y 2 2 + 8 3 y 3 2 f(x_1,x_2,x_3)=g(y_1,y_2,y_3)=4y_1^2+3y_2^2+\frac{8}{3}y_3^2 f(x1,x2,x3)=g(y1,y2,y3)=4y12+3y22+38y32,这是一个标准形二次型

  • 通过解线性方程组(1),得 y → x \bold{y\to{x}} yx所用的线性变换 x = Q y \bold{x=Qy} x=Qy

    • x 1 = y 1 − 1 2 y 2 − 1 3 y 3 x_1=y_1-\frac{1}{2}y_2-\frac{1}{3}y_3 x1=y121y231y3

    • x 2 = y 2 − 1 3 y 3 x_2=y_2-\frac{1}{3}y_3 x2=y231y3

    • x 3 = y 3 x_3=y_3 x3=y3

    • 变换矩阵: Q = ( 1 − 1 2 − 1 3 0 1 − 1 3 0 0 1 ) \bold Q=\begin{pmatrix}1&-\frac{1}{2}&-\frac{1}{3}\\0&1&-\frac{1}{3}\\0&0&1\end{pmatrix} Q= 100211031311

    • 求变换矩阵也可利用可逆线性变换的逆变换公式:若 y = C x \bold{y=Cx} y=Cx x = C − 1 y \bold{x=C^{-1}y} x=C1y,也是计算 C = ( 1 1 2 1 2 0 1 1 3 0 0 1 ) \bold C=\begin{pmatrix}1&\frac{1}{2}&\frac{1}{2}\\0&1&\frac{1}{3}\\0&0&1\end{pmatrix} C= 100211021311 的逆矩阵 C \bold{C} C,则 Q = C − 1 \bold{Q=C^{-1}} Q=C1

    • 将此线性变换代入 f f f或者 g g g中就可得到 f f f的标准形: f = 4 y 1 2 + 3 y 2 2 + 8 3 y 3 2 f=4y_1^2+3y_2^2+\frac{8}{3}y_3^2 f=4y12+3y22+38y32,这个表达式可以从已经配好方的式(2)中直接读出(将平方项依次用 y 1 , ⋯   , y n y_1,\cdots,y_n y1,,yn代替)

  • f ( x 1 , x 2 , x 3 ) = x 1 x 2 + x 1 x 3 + 2 x 2 x 3 f(x_1,x_2,x_3)=x_1x_2+x_1x_3+2x_2x_3 f(x1,x2,x3)=x1x2+x1x3+2x2x3标准化

    • 对于 x 1 x 2 x_1x_2 x1x2

      • T : { x 1 = y 1 − y 2 x 2 = y 1 + y 2 x 3 = y 3 T = ( 1 1 0 1 − 1 0 0 0 1 ) T:\begin{cases} x_1=y_1-y_2\\ x_2=y_1+y_2\\ x_3=y_3 \end{cases} \\ T=\begin{pmatrix} 1&1&0\\ 1&-1&0\\ 0&0&1 \end{pmatrix} T: x1=y1y2x2=y1+y2x3=y3T= 110110001

      • 把线性变换 x = T y \bold{x=Ty} x=Ty带入 f f f;

        • f = ( y 1 − y 2 ) ( y 1 + y 2 ) + ( y 1 − y 2 ) y 3 + 2 ( y 1 + y 2 ) ( y 3 ) = y 1 2 − y 2 2 + y 1 y 3 − y 2 y 3 + 2 y 1 y 3 + 2 y 2 y 3 = y 1 2 − y 2 2 + 3 y 1 y 3 + y 2 y 3 f=(y_1-y_2)(y_1+y_2)+(y_1-y_2)y_3+2(y_1+y_2)(y_3) \\=y_1^2-y_2^2+y_1y_3-y_2y_3+2y_1y_3+2y_2y_3 \\=y_1^2-y_2^2+3y_1y_3+y_2y_3 f=(y1y2)(y1+y2)+(y1y2)y3+2(y1+y2)(y3)=y12y22+y1y3y2y3+2y1y3+2y2y3=y12y22+3y1y3+y2y3
      • 问题转换为第一种类型,配方得:式(1)

        • g ( y 1 , y 2 , y 3 ) = ( y 1 + 3 2 y 3 ) 2 − ( y 2 + 1 2 y 3 ) 2 − 2 y 3 2 g(y_1,y_2,y_3)=(y_1+\frac{3}{2}y_3)^2-(y_2+\frac{1}{2}y_3)^2-2y_3^2 g(y1,y2,y3)=(y1+23y3)2(y2+21y3)22y32

      • { z 1 = y 1 + 3 2 y 3 z 2 = y 1 + 1 2 y 3 z 3 = y 3 f = z 1 2 − z 2 2 − 2 z 3 2 \\ \begin{cases} z_1=y_1+\frac{3}{2}y_3\\ z_2=y_1+\frac{1}{2}y_3\\ z_3=y_3 \end{cases} \\ f=z_1^2-z_2^2-2z_3^2 z1=y1+23y3z2=y1+21y3z3=y3f=z12z222z32

      • 解上述线性方程组,得新线性变换 y = Q z \bold{y=Qz} y=Qz及其变换矩阵:
        { y 1 = z 1 − 3 2 z 3 y 2 = z 2 − 1 2 z 3 y 3 = z 3 Q = ( 1 0 − 3 2 0 1 − 1 2 0 0 1 ) \begin{cases} y_1=z_1-\frac{3}{2}z_3\\ y_2=z_2-\frac{1}{2}z_3\\ y_3=z_3 \end{cases} \quad Q=\begin{pmatrix} 1&0&-\frac{3}{2}\\ 0&1&-\frac{1}{2}\\ 0&0&1 \end{pmatrix} y1=z123z3y2=z221z3y3=z3Q= 10001023211

      • 根据线性变换乘法和矩阵乘法的关系 ( x = T y = T ( Q z ) = ( T Q ) z ) (\bold{x=Ty=T(Qz)=(TQ)z}) (x=Ty=T(Qz)=(TQ)z),可求得能将 f f f标准化的线性变换 x = C z \bold{x=Cz} x=Cz的变换矩阵 C \bold{C} C
        C = T Q = ( 1 1 0 1 − 1 0 0 0 1 ) ( 1 0 − 3 2 0 1 − 1 2 0 0 1 ) = ( 1 1 − 2 1 − 1 − 1 0 0 1 ) C=TQ =\begin{pmatrix} 1&1&0\\ 1&-1&0\\ 0&0&1 \end{pmatrix} \begin{pmatrix} 1&0&-\frac{3}{2}\\ 0&1&-\frac{1}{2}\\ 0&0&1 \end{pmatrix} =\begin{pmatrix} 1&1&-{2}\\ 1&-1&-1\\ 0&0&1 \end{pmatrix} C=TQ= 110110001 10001023211 = 110110211

      • 由式(1),标准化后的二次型为 f = z 2 − z 2 2 − 2 z 3 2 f=z^2-z_2^2-2z_3^2 f=z2z222z32

初等变换法

  • 正交变换法和配方法需要考虑的东西较多,操作起来不是很方便,下面介绍一种利用初等变化法来求出能够标准化给定二次型的线性变换矩阵
  • 这个方法的基本原理和利用初等变换操作求解方阵的逆矩阵相同,都是利用一个 n n n阶单位阵来记录一系列的初等变换,得到想要的矩阵
原理
  • 任意实 n n n阶对称阵 A A A都合同于对角阵 Λ \Lambda Λ,即存在可逆矩阵 P \bold P P,使得 P T A P = Λ \bold{P^{T}AP=\Lambda} PTAP=Λ

  • 而可逆矩阵 P \bold{P} P可以表示为若干初等矩阵的乘积; P \bold{P} P= P 1 ⋯ P s \bold{P}_1\cdots\bold{P}_s P1Ps,从而有 ( P 1 ⋯ P s ) T A ( P 1 ⋯ P s ) = Λ \bold{(\bold{P}_1\cdots{P}_s)^{T}A(\bold{P}_1\cdots{P}_s)=\Lambda} (P1Ps)TA(P1Ps)=Λ,即 P s T ⋯ P 1 T A P 1 ⋯ P s = Λ \bold{\bold{P}_s^{T}\cdots{P}_{1}^{T}A\bold{P}_1\cdots{P}_s=\Lambda} PsTP1TAP1Ps=Λ(1)

  • 初等矩阵的转置仍然是初等矩阵,并且矩阵 A \bold{A} A左乘 P i T \bold{P}_i^{T} PiT并右乘 P i \bold{P}_i Pi相当于对矩阵 A \bold{A} A成对的同类型同顺序的行列初等变换(原理参考初等矩阵的性质)

  • 因此,我们可以通过将 A \bold{A} A经过成对初等变换转换为一个对角阵 Λ \bold\Lambda Λ

    • 这个过程对应于(1),每一次初等行变换对应于 P T i \bold{P^{T}}_i PTi,绑定的列变换对应于 P i \bold{P}_i Pi
    • 容易发现 P \bold{P} P= P 1 ⋯ P s \bold{P}_1\cdots\bold{P}_s P1Ps,因此再整个对角化过程中,只需要收集每一次的列变换
    • 收集 P 1 ⋯ P s \bold{P}_1\cdots\bold{P}_s P1Ps的方法是用一个 n n n阶单位阵同步对角化过程中的所有列变换
      • 原理是: E P 1 ⋯ P s \bold{E}\bold{P}_1\cdots\bold{P}_s EP1Ps= E P \bold{EP} EP= P \bold{P} P
      • 我们对行变换不感兴趣,当然行变换也是可以的,求出的是 P T \bold{P}^T PT,需要再次转置才能得到 P \bold{P} P,因此我们直接选择收集列变换更加直接
  • 这部分对初等变换法求解标准化二次型的线性可逆变换矩阵的可行性和正确性给出证明,并且给出了具体的操作方法

总结初等变换法的步骤
  • 构造松散分块矩阵 ( A E ) \bold{\binom{A}{E}} (EA)并执行初等变换

    • 之所以称为松散,因为我们在将 A A A变换为 Λ \Lambda Λ时,分块E只需要接收列变换 P 1 P 2 ⋯ P s \bold{P_1P_2\cdots{P_s}} P1P2Ps​,而不需要做行变换(即忽略行变换)

    • 在实际的操作中,可以分为行变换阶段和列变换阶段

      1. 我们可以先将矩阵 A \bold{A} A用一系列的初等行变换化为上三角矩阵,这部分变换对应于 L = P s T ⋯ P 1 T A \bold{L=\bold{P}_s^{T}\cdots{P}_{1}^{T}}\bold{A} L=PsTP1TA,即依次执行 P 1 T ⋯ P s T \bold{P}_1^{T}\cdots\bold{P}_s^{T} P1TPsT
        • L = ( P s T ( ⋯ ( P 1 T A ) ⋯   ) ) \bold{L=(\bold{P}_s^{T}(\cdots({P}_{1}^{T}A)\cdots))} L=(PsT((P1TA)))
      2. 然后再执依次行对应的列变换 P 1 ⋯ P s \bold{{P}_{1}\cdots{P}_{s}} P1Ps
        • R = ( ( ⋯ ( L P 1 ) ⋯   ) P s ) \bold{R=((\cdots(\bold{L}\bold{P}_1)\cdots){P}_s)} R=(((LP1))Ps)
        • 显然 Λ = R = P s T ⋯ P 1 T A P 1 ⋯ P s \bold{\Lambda=R=\bold{P}_s^{T}\cdots{P}_{1}^{T}A\bold{P}_1\cdots{P}_s} Λ=R=PsTP1TAP1Ps
        • 可见这种变换顺序是正确的
    • A \bold{A} A被一系列成对的初等行列变换转为对角阵 Λ \Lambda Λ,则记录列变换的 E \bold{E} E也就变成了 P = P 1 P 2 ⋯ P s \bold{P=P_1P_2\cdots{P_s}} P=P1P2Ps

  • 因此 P , Λ \bold{P,\Lambda} P,Λ是同时被求解出来:

    • 得到的 P \bold{P} P就是能够满足 P T A P = Λ \bold{P^{{T}}AP=\Lambda} PTAP=Λ(即,使二次型标准化)的可逆矩阵,对应的线性变换为 x = P y \bold{x=Py} x=Py
  • 用初等变换法将 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)= x 1 2 + 2 x 2 2 + 2 x 3 2 − 2 x 1 x 2 + 4 x 1 x 3 − 6 x 2 x 3 x_1^2+2x_2^2+2x_3^2-2x_1x_2+4x_1x_3-6x_2x_3 x12+2x22+2x322x1x2+4x1x36x2x3

    • f f f的系数矩阵为

    • A = ( 1 − 1 2 − 1 2 − 3 2 − 3 2 ) \bold{A}=\begin{pmatrix} 1&-1&2\\ -1&2&-3\\ 2&-3&2 \end{pmatrix} A= 112123232

    • A \bold{A} A进初等变换化为对角阵 Λ \bold\Lambda Λ

      • 先执行初等列变换 L = P 1 T ⋯ P s T A \bold{L}=\bold{P}_1^{T}\cdots\bold{P}_s^{T}\bold{A} L=P1TPsTA使 A \bold{A} A化为上三角阵

      • A → r 2 + r 1 ; r 3 − 2 r 1 ( 1 − 1 2 0 1 − 1 0 − 1 − 2 ) → r 3 + r 2 ( 1 − 1 2 0 1 − 1 0 0 − 3 ) = L \bold{A}\xrightarrow{r_2+r_1;r_3-2r_1} \begin{pmatrix} 1&-1&2\\ 0&1&-1\\ 0&-1&-2 \end{pmatrix} \xrightarrow{r_3+r_2} \begin{pmatrix} 1&-1&2\\ 0&1&-1\\ 0&0&-3 \end{pmatrix} =\bold{L} Ar2+r1;r32r1 100111212 r3+r2 100110213 =L

      • 再依次地执行对称的列变换 R = L P 1 ⋯ P s \bold{R}=\bold{L}\bold{P}_1\cdots\bold{P}_s R=LP1Ps(1)

      • L → c 2 + c 1 ; c 3 − 2 c 1 ( 1 0 0 0 1 − 1 0 0 − 3 ) → c 3 + c 2 ( 1 0 0 0 1 0 0 0 − 3 ) = R \bold{L}\xrightarrow{c_2+c_1;c_3-2c_1} \begin{pmatrix} 1&0&0\\ 0&1&-1\\ 0&0&-3 \end{pmatrix} \xrightarrow{c_3+c_2} \begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&-3 \end{pmatrix} =\bold{R} Lc2+c1;c32c1 100010013 c3+c2 100010003 =R

      • 再计算 P = E P 1 ⋯ P s \bold{P}=\bold{E}\bold{P}_1\cdots\bold{P}_s P=EP1Ps(2)

      • E = ( 1 0 0 0 1 0 0 0 1 ) → c 2 + c 1 ; c 3 − 2 c 1 ( 1 1 − 2 0 1 0 0 0 1 ) → c 3 + c 2 ( 1 1 − 1 0 1 1 0 0 1 ) = P \bold{E}=\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{pmatrix} \xrightarrow{c_2+c_1;c_3-2c_1} \begin{pmatrix} 1&1&-2\\ 0&1&0\\ 0&0&1 \end{pmatrix} \xrightarrow{c_3+c_2} \begin{pmatrix} 1&1&-1\\ 0&1&1\\ 0&0&1 \end{pmatrix} =\bold{P} E= 100010001 c2+c1;c32c1 100110201 c3+c2 100110111 =P

    • 从而 Λ = R = ( 1 0 0 0 1 0 0 0 − 3 ) \bold{\Lambda=R}=\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&-3 \end{pmatrix} Λ=R= 100010003 ; P = ( 1 1 − 1 0 1 1 0 0 1 ) \bold{P}=\begin{pmatrix} 1&1&-1\\ 0&1&1\\ 0&0&1 \end{pmatrix} P= 100110111

    • 即线性变换 x = P y \bold{x=Py} x=Py代入 f ( x ) f(\bold{x}) f(x),得标准形 f ( x ) = f ( P y ) f(\bold{x})=f(\bold{Py}) f(x)=f(Py)= g ( y ) g(\bold{y}) g(y)= y T Λ y \bold{y^T\Lambda{y}} yTΛy,其中 x = ( x 1 , x 2 , x 3 ) \bold{x}=(x_1,x_2,x_3) x=(x1,x2,x3), y = ( y 1 , y 2 , y 3 ) \bold{y}=(y_1,y_2,y_3) y=(y1,y2,y3)

    • 用求和式表示为 f f f= y 1 2 + y 2 2 − 3 y 3 2 y_1^2+y_2^2-3y_3^2 y12+y223y32文章来源地址https://www.toymoban.com/news/detail-699687.html

到了这里,关于LA@二次型@标准化相关原理和方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MBSE项目的全新数据、信息与知识管理方法|数据模型标准化思路

    仅供学习使用 作者:M. El Alaoui, S. Rabah, V. Chapurlat, V. Richet , R. Plana 来源:https://doi.org/10.1016/j.ifacol.2022.10.135 文章详细介绍了DIK管理在关键基础设施领域的重要性,并介绍了提出的方法。本文的主要贡献是基于现有DIK管理策略和原则的方法,其概念部分关注如何探索现有的本体

    2024年02月12日
    浏览(48)
  • 蛋白质组学两个定量方法(iBAQ和LFQ)的区别及常见的标准化方法

    首先,在使用Maxquant软件进行查库的时候,有两个参数值得大家关注:LFQ和iBAQ。 当我们在进行搜库时,如果两个参数都选择,将会在结果文件中有三个定量结果:Intensity,IBAQ和LFQ。 接下来,我们来详细解释一下这三个定量结果的区别: Intensity:将Protein Group中的所有Unique和

    2024年02月04日
    浏览(44)
  • 数据无量纲化 学习(2):数据缩放(数据标准化 / 数据无量纲化 )的作用、适用场景、具体方法

    将不同规格的数据转换到同一规格,或将不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。 在以梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度; 在距离类模型,譬如K近邻,KMeans聚类中,无

    2023年04月08日
    浏览(34)
  • 标准化体系建设(上):如何建立应用标准化体系和模型?

    今天我专门来讲讲标准化这个工作。可以说这项工作是运维过程中最基础、最重要的,但也是最容易被忽视的一个环节。 我做过多次公开演讲,每次讲到这个环节,通常会有单独的一页PPT,就放四个字,字号加大加粗,重复三遍,这四个字就是“标准先行”,然后演讲过程中

    2024年02月08日
    浏览(45)
  • python实现z-score标准化和0-1标准化

    目录 标准化处理 0-1标准化: z-score标准化: 1、用自带的函数来操作 实现z-score标准化 实现0-1标准化 2、自定义函数实现 实现z-score标准化 实现0-1标准化 对输出结果范围有要求,数据较为稳定的,不存在极端的最大最小值 数据存在异常值和较多的噪音,可以间接通过中心化避

    2024年02月11日
    浏览(44)
  • 不要再搞混标准化与归一化啦,数据标准化与数据归一化的区别!!

    数据的标准化是将数据按照一定的 数学规则进行转换 ,使得数据满足特定的标准,通常是使数据满足正态分布或标准差为1的标准。 标准化的常见方法包括 最小-最大标准化 和 Z-score标准化 。最小-最大标准化将数据映射到 [0,1 ]的范围内,最小-最大标准化将数据映射到0-1区间

    2024年01月21日
    浏览(56)
  • GEE:影像标准化

    本文将介绍在Google Earth Engine (GEE)平台上进行影像标准化的公式和代码。 影像标准化是一种预处理方法,用于将不同区域、不同时间、不同传感器拍摄的影像进行比较和分析。在GEE平台上进行影像标准化,可以使用本文代码,本文以EVI为例,将影像进行了标准化处理。 其结

    2023年04月09日
    浏览(62)
  • 用UiPath实现网页抓取——表格数据提取-1-单击选择分类-ISO标准化-01-综合、术语、标准化、文献目录获取

    准备获取目录的链接是 全国标准信息公告服务平台链接: https://std.samr.gov.cn/search/iso?tid=q= 第一步,标注啊类型选择——ISO 第二步,标准化状态选择——现行 第三步,ICS分类选择——01_综合、术语标准化、文献 将数据分别复制到excel文件中,如下图。 由于国际标准分类号在

    2024年02月04日
    浏览(56)
  • python三种数据标准化

    数据变换是数据准备的重要环节,它通过 数据平滑 、 数据聚集 、 数据概化 和 规范化 等方式将数据转换成适用于数据挖掘的形式。常见的变换方法: 1.数据平滑:去除数据中的噪声,将连续数据离散化。这里可以采用分箱、聚类和回归的方式进行数据平滑 2.数据聚集:对

    2024年02月07日
    浏览(53)
  • go的标准化error处理

    优化前:我们可以看到有4个地方都需要进行错误判断,我们可以想办法将所有的错误处理代码写到别的地方,进行调用即可。 优化后:

    2024年04月15日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包