【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补)

这篇具有很好参考价值的文章主要介绍了【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文章代码以c++为例!

一、力扣第1049题:最后一块石头的重量 II

题目:

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100

思路

如果对背包问题不都熟悉先看这两篇:

  • 动态规划:关于01背包问题,你该了解这些!
  • (opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)
  • (opens new window)

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了

是不是感觉和昨天讲解的416. 分割等和子集

(opens new window)非常像了。

本题物品的重量为stones[i],物品的价值也为stones[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

接下来进行动规五步曲:

  1. 确定dp数组以及下标的含义

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎。

大家可以再去看 dp[j]的含义。

  1. dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。

代码为:

vector<int> dp(15001, 0);
  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组)

(opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

for (int i = 0; i < stones.size(); i++) { // 遍历物品
    for (int j = target; j >= stones[i]; j--) { // 遍历背包
        dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
    }
}

  1. 举例推导dp数组

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补),力扣基础150一刷,算法,动态规划,leetcode,c++,数据结构

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

以上分析完毕,C++代码如下:

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        vector<int> dp(15001, 0);
        int sum = 0;
        for (int i = 0; i < stones.size(); i++) sum += stones[i];
        int target = sum / 2;
        for (int i = 0; i < stones.size(); i++) { // 遍历物品
            for (int j = target; j >= stones[i]; j--) { // 遍历背包
                dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        return sum - dp[target] - dp[target];
    }
};

  • 时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
  • 空间复杂度:O(m)

# 总结

本题其实和416. 分割等和子集

(opens new window)几乎是一样的,只是最后对dp[target]的处理方式不同。

416. 分割等和子集

(opens new window)相当于是求背包是否正好装满,而本题是求背包最多能装多少。

二、力扣第494题:目标和

题目:

给你一个非负整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路

如果对背包问题不都熟悉先看这两篇:

  • 动态规划:关于01背包问题,你该了解这些!
  • (opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)
  • (opens new window)

如果跟着「代码随想录」一起学过回溯算法系列

(opens new window)的录友,看到这道题,应该有一种直觉,就是感觉好像回溯法可以爆搜出来。

事实确实如此,下面我也会给出相应的代码,只不过会超时,哈哈。

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

# 回溯算法

在回溯算法系列中,一起学过这道题目回溯算法:39. 组合总和

(opens new window)的录友应该感觉很熟悉,这不就是组合总和问题么?

此时可以套组合总和的回溯法代码,几乎不用改动。

当然,也可以转变成序列区间选+ 或者 -,使用回溯法,那就是另一个解法。

我也把代码给出来吧,大家可以了解一下,回溯的解法,以下是本题转变为组合总和问题的回溯法代码:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
        }
        // 如果 sum + candidates[i] > target 就终止遍历
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i + 1);
            sum -= candidates[i];
            path.pop_back();

        }
    }
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (S > sum) return 0; // 此时没有方案
        if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
        int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和

        // 以下为回溯法代码
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 需要排序
        backtracking(nums, bagSize, 0, 0);
        return result.size();
    }
};

当然以上代码超时了。

也可以使用记忆化回溯,但这里我就不在回溯上下功夫了,直接看动规吧

# 动态规划

如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案

同时如果 S的绝对值已经大于sum,那么也是没有方案的。

(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  1. 确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个我在动态规划:关于01背包问题,你该了解这些!(滚动数组)

(opens new window)也有介绍。

  1. 确定递推公式

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

  1. dp数组如何初始化

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组)

(opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  1. 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补),力扣基础150一刷,算法,动态规划,leetcode,c++,数据结构

C++代码如下:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) sum += nums[i];
        if (abs(S) > sum) return 0; // 此时没有方案
        if ((S + sum) % 2 == 1) return 0; // 此时没有方案
        int bagSize = (S + sum) / 2;
        vector<int> dp(bagSize + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {
            for (int j = bagSize; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[bagSize];
    }
};

  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(m),m为背包容量

# 总结

此时 大家应该不禁想起,我们之前讲过的回溯算法:39. 组合总和

(opens new window)是不是应该也可以用dp来做啊?

是的,如果仅仅是求个数的话,就可以用dp,但回溯算法:39. 组合总和

(opens new window)要求的是把所有组合列出来,还是要使用回溯法爆搜的。

本题还是有点难度,大家也可以记住,在求装满背包有几种方法的情况下,递推公式一般为:

dp[j] += dp[j - nums[i]];

后面我们在讲解完全背包的时候,还会用到这个递推公式!

三、力扣第474题:一和零

题目:

给你一个二进制字符串数组 strs 和两个整数 mn

请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

示例 1:

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0' 和 '1' 组成
  • 1 <= m, n <= 100

思路

如果对背包问题不都熟悉先看这两篇:

  • 动态规划:关于01背包问题,你该了解这些!
  • (opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)
  • (opens new window)

这道题目,还是比较难的,也有点像程序员自己给自己出个脑筋急转弯,程序员何苦为难程序员呢。

来说题,本题不少同学会认为是多重背包,一些题解也是这么写的。

其实本题并不是多重背包,再来看一下这个图,捋清几种背包的关系

【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补),力扣基础150一刷,算法,动态规划,leetcode,c++,数据结构

多重背包是每个物品,数量不同的情况。

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

  1. 确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  1. dp数组如何初始化

在动态规划:关于01背包问题,你该了解这些!(滚动数组)

(opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组)

(opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

代码如下:

for (string str : strs) { // 遍历物品
    int oneNum = 0, zeroNum = 0;
    for (char c : str) {
        if (c == '0') zeroNum++;
        else oneNum++;
    }
    for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
        for (int j = n; j >= oneNum; j--) {
            dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
        }
    }
}

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

  1. 举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

最后dp数组的状态如下所示:

【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补),力扣基础150一刷,算法,动态规划,leetcode,c++,数据结构

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0
        for (string str : strs) { // 遍历物品
            int oneNum = 0, zeroNum = 0;
            for (char c : str) {
                if (c == '0') zeroNum++;
                else oneNum++;
            }
            for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
};
  • 时间复杂度: O(kmn),k 为strs的长度
  • 空间复杂度: O(mn)

# 总结

不少同学刷过这道题,可能没有总结这究竟是什么背包。

此时我们讲解了0-1背包的多种应用,

  • 纯 0 - 1 背包
  • (opens new window) 是求 给定背包容量 装满背包 的最大价值是多少。
  • 416. 分割等和子集
  • (opens new window) 是求 给定背包容量,能不能装满这个背包。
  • 1049. 最后一块石头的重量 II
  • (opens new window) 是求 给定背包容量,尽可能装,最多能装多少
  • 494. 目标和
  • (opens new window) 是求 给定背包容量,装满背包有多少种方法。
  • 本题是求 给定背包容量,装满背包最多有多少个物品。

所以在刷的这些题目,都是 0-1背包不同维度上的应用,大家可以细心体会!文章来源地址https://www.toymoban.com/news/detail-699793.html

day43补

到了这里,关于【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第九章 动态规划part10

    121. 买卖股票的最佳时机 122. 买卖股票的最佳时机 II 分多次购买和一次购买的区别

    2024年04月10日
    浏览(46)
  • 代码随想录 day38 第九章 动态规划part01

    ●  理论基础 ●  509. 斐波那契数 ●  70. 爬楼梯 ●  746. 使用最小花费爬楼梯 理论基础 解决动态规划必须要想清楚的点 dp数组以及下标的含义 递推公式 dp数组如何初始化 遍历顺序 打印数组 检查结果 关联 leetcode 509. 斐波那契数 思路 动规五部曲 dp数组以及下标的含义

    2024年04月17日
    浏览(50)
  • 第九章 动态规划part04(● 01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集 )

    ● 01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集 https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html 视频讲解:https://www.bilibili.com/video/BV1cg411g7Y6 1.确定dp数组以及下标的含义 i是物品,j是背包容量

    2024年01月16日
    浏览(52)
  • 【LeetCode题目详解】第八章 贪心算法 part05 435. 无重叠区间 763.划分字母区间 56. 合并区间 (day36补)

    给定一个区间的集合  intervals  ,其中 intervals[i] = [starti, endi]  。返回 需要移除区间的最小数量,使剩余区间互不重叠  。 示例 1: 示例 2: 示例 3: 提示: 1 = intervals.length = 105 intervals[i].length == 2 -5 * 104 = starti  endi = 5 * 104 相信很多同学看到这道题目都冥冥之中感觉要排序,但

    2024年02月11日
    浏览(51)
  • 【LeetCode】动态规划类题目详解

    所有题目均来自于LeetCode,刷题代码使用的Python3版本 如果某一个问题有重叠的子问题,则使用动态规划进行求解是最有效的。 动态规划中每一个状态一定是由上一个状态推导出来的,这一点区别于贪心算法 动态规划五部曲 确定dp数组以及下标的含义 确定递推公式 dp数组如何

    2024年04月11日
    浏览(49)
  • 第九章动态规划——不同路径(二)有障碍物

    目录 力扣题号:63. 不同路径 II - 力扣(LeetCode) 题目描述 示例 提示 思路 解法一:动态规划 (1)dp数组的下标及其含义 (2)确定递推公式 (3)初始化递推数组 (4)确定遍历顺序 (5)根据题意推出dp数组对照 障碍物处理 代码实现 总结 注:下述题目描述和示例均来自力

    2024年04月23日
    浏览(36)
  • Day43|动态规划part05: 1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

    本题物品的重量为stones[i],物品的价值也为stones[i]。 对应着01背包里的物品重量weight[i]和 物品价值value[i]。 确定dp数组以及下标的含义 dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j] 。 确定递推公式 01背包的递推公式为:dp[j] = ma

    2024年04月23日
    浏览(47)
  • 【leetcode 力扣刷题】回文串相关题目(KMP、动态规划)

    题目链接:5. 最长回文子串 题目内容: 题目就是要我们找s中的回文子串,还要是最长的。其实想想,暴力求解也行……就是遍历所有的子串,同时判断是不是回文串,是的话再和记录的最大长度maxlen比较,如果更长就更新。时间复杂度直接变成O(n^3)。 优化的点在于,假设子

    2024年02月09日
    浏览(48)
  • 【LeetCode题目详解】第八章 贪心算法 part06 738.单调递增的数字 968.监控二叉树 (day37补)

    当且仅当每个相邻位数上的数字  x  和  y  满足  x = y  时,我们称这个整数是 单调递增 的。 给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 109 # 暴力解法 题意很简单,那么首先想的就是暴力解法了,来我替大家

    2024年02月10日
    浏览(41)
  • 算法训练day41|动态规划 part03(LeetCode343. 整数拆分、96.不同的二叉搜索树)

    题目链接🔥🔥 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 说明: 你可以假设 n 不小于 2 且不大于

    2024年02月10日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包