OpenCV(二十六):边缘检测(二)

这篇具有很好参考价值的文章主要介绍了OpenCV(二十六):边缘检测(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.Laplacian算子边缘检测

原理:

Laplacian边缘检测函数Laplacian()

示例代码:

2.Canny算子边缘检测

原理:

Canny算法函数Canny()

示例代码:


1.Laplacian算子边缘检测

原理:

        Laplacian算子的原理基于图像的二阶导数。一阶导数可以帮助我们检测图像中的边缘,而二阶导数则可以检测边缘的交叉点,即图像中的角点。

Laplacian算子定义为二阶空间导数的和,在二维情况下用于图像处理,其离散形式如下:

L(x, y) = d^2(I(x, y)) / dx^2 + d^2(I(x, y)) / dy^2 

其中,I(x, y)表示图像中的像素值,d^2表示偏导数,dx表示在X方向上的导数,dy表示在Y方向上的导数。

Laplacian算子可以通过应用离散卷积来计算。一种常见的离散Laplacian算子模板如下:

 

通过将该模板与图像进行卷积操作,我们可以计算图像中每个像素的Laplacian响应。

具体步骤如下:

  1. 将图像转换为灰度图像(如果不是灰度图像)。
  2. 对图像应用Laplacian算子的离散模板。
  3. 对卷积结果进行阈值处理,以提取边缘信息。
  4. 可选地对阈值处理后的边缘图像进行非最大抑制和边缘连接等后处理操作。

Laplacian算子的输出结果是一个表示边缘的高频分量图像。边缘通常显示为明亮像素与暗亮像素之间的边界。边缘的宽度和强度取决于Laplacian算子的大小和图像中的灰度变化。

Laplacian边缘检测函数Laplacian()

void cv::Laplacian ( InputArray src,

OutputArray dst,

int        ddepth,

int     ksize = 1,

double   scale = 1,

double    delta =0,

int     borderType = BORDER DEFAULT

)

  • src:输入原图像,可以是灰度图像和彩色图像。
  • dst: 输出图像,与输入图像src具有相同的尺寸和通道数。
  • ddepth: 输出图像的数据类型(深度),根据输入图像的数据类型不同拥有不同的取值范围。
  • ksize:滤波器的大小,必须为正奇数。
  • scale:对导数计算结果进行缩放的缩放因子,默认系数为1,不进行缩放。
  • delta:偏值,在计算结果中加上偏值。
  • borderType:像素外推法选择标志。
示例代码:
void Laplacian_f(Mat image){
    Mat gray;
    cvtColor(image,gray,COLOR_BGR2GRAY);
    Mat result,result_g,result_G;
    //未滤波提取边缘
    Laplacian(gray,result,CV_16S,3,1,0);
    convertScaleAbs(result,result);
    //滤波后提取边缘
    GaussianBlur(gray,result_g,Size(3,3),5,0);//高斯滤波
    Laplacian(result_g,result_G,CV_16S,3,1,0);
    convertScaleAbs(result_G,result_G);
    //显示图像
    imwrite("/sdcard/DCIM/result.png",result);
    imwrite("/sdcard/DCIM/result_G.png",result_G);
}

OpenCV(二十六):边缘检测(二),Android之OpenCV,opencv,人工智能,计算机视觉,C++                   OpenCV(二十六):边缘检测(二),Android之OpenCV,opencv,人工智能,计算机视觉,C++

  (未滤波提取边缘图像)                            (滤波后提取边缘图像)

2.Canny算子边缘检测

原理:

OpenCV(二十六):边缘检测(二),Android之OpenCV,opencv,人工智能,计算机视觉,C++

Canny算法函数Canny()

void cv::Canny ( InputArray image,

OutputArray edges,

double  threshold1,

double   threshold2,

int  apertureSize = 3,

bool   L2gradient = false

)

  • image:输入图像,必须是CV 8U单通道或者三通道图像
  • edges:输出图像,与输入图像具有相同尺寸的单通道图像,且数据类型为CV 8U。
  • threshold1:第一个滞后阙值
  • threshold2:第二个滞后阀值
  • apertureSize: Sobel算子的直径
  • L2gradient:计算图像梯度幅值的标志
示例代码:
void Canny_f(Mat image){
    Mat gray;
    cvtColor(image,gray,COLOR_BGR2GRAY);
    Mat resultHigh,resultLow,resultG;
    //大阈值检测图像边缘
    Canny(image,resultHigh,100,200,3);
    //小阈值检测图像边缘
    Canny(image,resultLow,20,40,3);
    //高斯模糊后检测图像边缘
    GaussianBlur(gray,resultG,Size(3,3),5);
    Canny(resultG,resultG,100,200,3);
    //显示图像
    imwrite("/sdcard/DCIM/resultHigh.png",resultHigh);
    imwrite("/sdcard/DCIM/resultLow.png",resultLow);
    imwrite("/sdcard/DCIM/resultG.png",resultG);
}

OpenCV(二十六):边缘检测(二),Android之OpenCV,opencv,人工智能,计算机视觉,C++OpenCV(二十六):边缘检测(二),Android之OpenCV,opencv,人工智能,计算机视觉,C++OpenCV(二十六):边缘检测(二),Android之OpenCV,opencv,人工智能,计算机视觉,C++

(大阈值检测图像边缘)            (小阈值检测图像边缘)            (高斯模糊后检测图像边缘)文章来源地址https://www.toymoban.com/news/detail-700589.html

到了这里,关于OpenCV(二十六):边缘检测(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv#34 边缘检测(二)

    前面介绍的Sobel算子和Scharr算子存在的问题: 1.要分别计算两个方向(x,y)的边缘,之后将两方向的边缘进行叠加。 2.边缘与方向相关性较大。当我们通过Sobel算子提取x方向检测时,它所能够检测到的边缘都是一个沿着y轴方向的边缘,与检测的方向相反(垂直方向),当进行y方向

    2024年01月25日
    浏览(28)
  • opencv#33 边缘检测

         图像的每一行每一列都可以看成是一个连续的信号经过离散后得到的数值,例如上图左侧给出的图像由黑色到白色的一个信号,也就是图像中某一行像素变化是由黑色逐渐到白色,我们将其对应在一个坐标轴中,将像素值的大小对应与我们y轴,我们可以得到中间图片的

    2024年01月25日
    浏览(30)
  • 【OpenCV--边缘检测】

    目录 一、边缘检测概念 二、Sobel算子 1.描述: 2.方法: 3.Sobel算子的应用:  三、Laplacian算子 1.描述: 2.应用: 四、Canny边缘检测 1.原理: 2.应用: 1.边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点,往往以轮廓的形式表

    2024年02月01日
    浏览(40)
  • OpenCV——Canny边缘检测算法

    图像分割是将数字图像细分为多个子区域的过程,在计算机视觉/机器视觉领域被广泛应用。它的目的是简化或改变图像的表示形式,以便更容易理解和分析。常见的图像分割方法包括阈值处理、聚类法、边缘检测和区域生长等。解决图像分割问题通常需要结合领域知识,以提

    2024年04月17日
    浏览(44)
  • OpenCV边缘检测与视频读写

    OpenCV中的边缘检测原理主要基于图像梯度的计算,包括一阶梯度和二阶梯度。 一阶梯度 :它反映了图像亮度变化的速度。Sobel算法就是一种以一阶梯度为基础的边缘检测算法。它通过计算图像在水平和垂直方向上的梯度来检测边缘。这种方法简单有效,但对于噪声较为敏感。

    2024年02月21日
    浏览(37)
  • 基于opencv的边缘检测方法

    用OpenCV的形态变换( 膨胀、腐蚀、开运算和闭运算)函数morphologyEx 梯度运算即膨胀结果-腐蚀结果: 【注意】对于二值图像来说,必须是前景图像为白色,背景为黑色,否则需要进行反二值化处理 可以计算不同方向的梯度,梯度运算如下图所示: 得出x方向的梯度值和y方向

    2024年02月02日
    浏览(36)
  • OpenCV边缘检测:findContours()、approxPolyDP()

    参数 src 原图 cv2.RETR_TREE:提取轮廓后,输出轮廓信息的组织形式,除了cv2.RETR_TREE还有以下几种选项: cv2.RETR_EXTERNAL:输出轮廓中只有外侧轮廓信息; cv2.RETR_LIST:以列表形式输出轮廓信息,各轮廓之间无等级关系; cv2.RETR_CCOMP:输出两层轮廓信息,即内外两个边界(下面将会

    2024年02月06日
    浏览(41)
  • OpenCV 如何实现边缘检测器

    返回:OpenCV系列文章目录(持续更新中......) 上一篇:OpenCV如何实现拉普拉斯算子的离散模拟 下一篇 :OpenCV系列文章目录(持续更新中......) 在本教程中,您将学习如何: 使用 OpenCV 函数 cv::Canny 实现 Canny 边缘检测器。 Canny Edge探测器 [48]由John F. Canny于1986年开发。Canny 算法

    2024年04月25日
    浏览(37)
  • opencv-Canny 边缘检测

    Canny边缘检测是一种经典的图像边缘检测算法,它在图像中找到强度梯度的变化,从而 识别出图像中的边缘 。 Canny边缘检测的优点包括高灵敏度和低误检率。 在OpenCV中, cv2.Canny() 函数用于执行Canny边缘检测。 基本语法如下: 参数说明: image : 输入图像,通常为灰度图像。

    2024年02月22日
    浏览(58)
  • 【OpenCV】第十章: Canny边缘检测

    第十章: Canny边缘检测 canny边缘检测是一种一阶微分算子检测算法,但为什么还要单独拿出来讲呢,因为它几乎是边缘检测算子中最优秀的边缘检测算子,你很难找到一种边缘检测算子能显著地比Canny算子做的更好。 Canny提出了边缘检测算子优劣评判的三条标准: 1、较高的检

    2024年02月03日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包