算法训练day37|贪心算法 part06(LeetCode738.单调递增的数字)

这篇具有很好参考价值的文章主要介绍了算法训练day37|贪心算法 part06(LeetCode738.单调递增的数字)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

738.单调递增的数字

题目链接🔥🔥
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

示例 1:
输入: N = 10
输出: 9

示例 2:
输入: N = 1234
输出: 1234

示例 3:
输入: N = 332
输出: 299
说明: N 是在 [0, 10^9] 范围内的一个整数。

思路分析

暴力解法会超时。
题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

这一点如果想清楚了,这道题就好办了。

此时是从前向后遍历还是从后向前遍历呢?

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。

代码实现

C++代码如下:

class Solution {
public:
    int monotoneIncreasingDigits(int N) {
        string strNum = to_string(N);
        // flag用来标记赋值9从哪里开始
        // 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
        int flag = strNum.size();
        for (int i = strNum.size() - 1; i > 0; i--) {
            if (strNum[i - 1] > strNum[i] ) {
                flag = i;
                strNum[i - 1]--;
            }
        }
        for (int i = flag; i < strNum.size(); i++) {
            strNum[i] = '9';
        }
        return stoi(strNum);
    }
};

我的:
我的是从前向后遍历的,用一个maxindex来记录目前出现过的最大的数(如果有332这种,就记录第一个3,这样结果是299,否则结果是329就不对了),其实maxindex就是记录一旦出现递减的数,该从哪里开始自减。文章来源地址https://www.toymoban.com/news/detail-700730.html

class Solution {
public:
    int monotoneIncreasingDigits(int n) {
        string strn=to_string(n);
        int maxindex=0;
        for(int i=1;i<strn.size();i++){
            if(strn[i]>strn[i-1]) maxindex=i;
            if(strn[i]<strn[i-1]){
                strn[maxindex]--;
                for(int j=maxindex+1;j<strn.size();j++) strn[j]='9';
            }
        }
        int result=stoi(strn);
        return result;
    }
};

到了这里,关于算法训练day37|贪心算法 part06(LeetCode738.单调递增的数字)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 贪心算法part6 | ● 738.单调递增的数字 ● 968.监控二叉树

    代码随想录算法训练营第一天 | 题目、题目 738.单调递增的数字 局部最优:前一个数比当前数小,前一个数位减一,当前数置为9 题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。 例如:98,一旦出现strNum[i - 1] strNum[i]的情况(非单调递增),首先想

    2024年02月10日
    浏览(38)
  • 算法训练day36|贪心算法 part05(重叠区间三连击:LeetCode435. 无重叠区间763.划分字母区间56. 合并区间)

    题目链接🔥🔥 给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。 注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。 示例 1: 输入: [ [1,2], [2,3], [3,4], [1,3] ] 输出: 1 解释: 移除 [1,3] 后,剩下的区

    2024年02月09日
    浏览(62)
  • Day32- 贪心算法part06

    题目一:738. 单调递增的数字  738. 单调递增的数字 当且仅当每个相邻位数上的数字  x  和  y  满足  x = y  时,我们称这个整数是 单调递增 的。 给定一个整数  n  ,返回  小于或等于  n  的最大数字,且数字呈  单调递增  。 从高位到低位遍历整数 n 的每一位数字,当

    2024年01月22日
    浏览(46)
  • 【LeetCode题目详解】第八章 贪心算法 part05 435. 无重叠区间 763.划分字母区间 56. 合并区间 (day36补)

    给定一个区间的集合  intervals  ,其中 intervals[i] = [starti, endi]  。返回 需要移除区间的最小数量,使剩余区间互不重叠  。 示例 1: 示例 2: 示例 3: 提示: 1 = intervals.length = 105 intervals[i].length == 2 -5 * 104 = starti  endi = 5 * 104 相信很多同学看到这道题目都冥冥之中感觉要排序,但

    2024年02月11日
    浏览(51)
  • 力扣第738题 单调递增的数字 c++ 暴力超时 贪心优化

    738. 单调递增的数字 中等 相关标签 贪心  数学 当且仅当每个相邻位数上的数字  x  和  y  满足  x = y  时,我们称这个整数是 单调递增 的。 给定一个整数  n  ,返回  小于或等于  n  的最大数字,且数字呈  单调递增  。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 109 从N开始

    2024年02月08日
    浏览(37)
  • 算法训练day31贪心算法理论基础Leetcode455分发饼干376摆动序列53最大子序和

    文章链接 代码随想录 (programmercarl.com) 说实话贪心算法并没有固定的套路 。 最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧 。 面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了 。 刷题或者面

    2024年02月20日
    浏览(47)
  • 算法记录 | Day37 贪心算法

    思路: 1.一旦出现strNum[i - 1] strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。 2.向后遍历 从前向后遍历的话,遇到strNum[i - 1] strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能

    2023年04月22日
    浏览(32)
  • day44代码训练|动态规划part06

    完全背包和01背包问题唯一不同的地方就是,每种物品有无限件 。 1. dp数组的含义 dp[i][j] 0-i物品,重量为j的容量时,最大的价值 2. 递推公式 dp[i][j] = max(dp[i-1][j],dp[i][j-weight[i]]+value[i]); 两种状态,不用物品i的话,直接是用dp[i-1][j] 选用物品的话,为了重复使用物品i,其实是

    2024年02月03日
    浏览(41)
  • 算法刷题Day 37 单调递增的数字+监听二叉树

    两个可能经常要用到的函数 字符串转数字: to_string() 数字转字符串: stoi() 利用树后续遍历,同时加上状态转移的方法,非常值得反复学习

    2024年02月13日
    浏览(35)
  • Day 37 贪心算法 6

    代码随想录  1. 思路 从后向前判断,如果不呈现单调递增的状态,后一位变成9,前一位-1。这里局部最优是每两位的最优解,从后向前线性遍历能得到全局最优。 但是有一点没有想清楚 。如果出现了上述的两位数倒序情况,之后的所有数字都应该变成9。例如52583,最小的递

    2024年02月01日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包