An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks

这篇具有很好参考价值的文章主要介绍了An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文是LLM系列文章,针对《An Efficient Memory-Augmented Transformer for
Knowledge

摘要

获取外部知识对于许多自然语言处理任务至关重要,例如问答和对话。现有的方法通常依赖于将知识存储在其参数中的参数模型,或者使用可以访问外部知识源的检索增强模型。参数模型和检索增强模型在计算效率和预测准确性方面具有互补优势。为了结合这两种方法的优势,我们提出了高效内存增强Transformer(EMAT)——它将外部知识编码为键值内存,并利用快速最大内积搜索进行内存查询。我们还引入了预训练任务,允许EMAT对信息性键值表示进行编码,并学习将多个内存槽集成到Transformer中的隐式策略。在各种知识密集型任务(如问答和对话数据集)上的实验表明,使用我们的方法简单地扩充参数模型(T5基础)会产生更准确的结果(例如,25.8→ NQ上的44.3 EM)同时保持高吞吐量(例如NQ上1000个查询/s)。与检索的改进模型相比,EMAT在WoW和ELI5上运行得更快,结果更准确。

1 引言

2 相关工作

3 高效内存增强Transformer

4 EMAT的训练流程

5 实验

6 分析

7 结论

在这项工作中,我们提出了一种有效的内存改进Transformer(EMAT),它结合了参数模型和检索改进模型的优点。它将外部知识编码到键值存储器中,并利用快速MIPS搜索进行存储器查询。我们引入了预训练任务,以学习更好的键值表示和将多个内存槽集成到transformer中。在知识密集型任务上的实验,包括开放域问答、对话和长形式问答,表明了EMAT的准确性和快速性。在未来,我们将寻求改进,将更多样化的知识整合到记忆中,并将我们的方法推广到更多的下游任务中。

局限性

一个限制是内存检索模块需要弱监督才能进行训练。这可能意味着,当应用于不同的下游任务时,我们定义了不同的弱监管标签。可以使用端到端的训练技术,如Paranjape等人提出的技术,用解码器的梯度训练记忆检索模块,我们将其作为未来的工作。另一个潜在的限制是,我们需要存储密集的键值存储器M,这需要大约300GB的CPU RAM。但由于获得CPU RAM比GPU内存多的机器相对容易,而且大多数深度学习工作站都能达到这一要求,我们认为这并不是太大的限制。此外,在内存资源不足的情况下,我们可以使用LRU缓存来节省RAM。文章来源地址https://www.toymoban.com/news/detail-701225.html

到了这里,关于An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读 | Restormer: Efficient Transformer for High-Resolution Image Restoration

    前言:CVPR2022oral 用transformer应用到low-level任务 low-level task 如deblurringdenoisingdehazing等任务多是基于CNN做的,这样的局限性有二: 第一是卷积操作的感受野受限,很难建立起全局依赖, 第二就是卷积操作的卷积核初始化是固定的,而attention的设计可以通过像素之间的关系自适

    2024年02月05日
    浏览(52)
  • 【论文阅读】Informer Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

    原始题目:Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting 中文翻译:Informer:超越有效变换器进行长序列时间序列预测 发表时间:2021-05-18 平台:Proceedings of the AAAI Conference on Artificial Intelligence 文章链接:https://ojs.aaai.org/index.php/AAAI/article/view/17325 开源代码:htt

    2024年03月12日
    浏览(54)
  • 论文阅读——SMLP4Rec An Efficient All-MLP Architecture for Sequential Recommendations

    SMLP4Rec:用于顺序推荐的高效全 MLP 架构 自注意力模型通过捕获用户-项目交互之间的顺序依赖关系,在顺序推荐系统中实现了最先进的性能。然而,它们依赖于向项目序列添加位置嵌入来保留顺序信息,由于这两种类型的嵌入之间的异质性,这可能会破坏项目嵌入的语义。此

    2024年04月26日
    浏览(40)
  • 【论文阅读笔记】Würstchen: AN EFFICIENT ARCHITECTURE FOR LARGE-SCALETEXT-TO-IMAGE DIFFUSION MODELS

    这篇文章提出了一个高效的用于文本到图像生成模型架构,整体思路比较直白,在不损失图像生成质量的情况下,相比于现有T2I模型(SD1.4,SD2.1等)大大节约了成本。附录部分给了一些有趣的东西,比如FID的鲁棒性 整篇文章还有点疑惑,比如阶段B的训练,使用的模型;节省

    2024年02月21日
    浏览(47)
  • MixFormerV2: Efficient Fully Transformer Tracking

    基于变压器的跟踪器在标准基准测试上取得了很强的精度。然而,它们的效率仍然是在GPU和CPU平台上实际部署的一个障碍。在本文中,为了克服这一问题,我们提出了一个完全变压器跟踪框架,称为MixFormerV2,没有任何密集的卷积操作和复杂的分数预测模块。我们的关键设计

    2024年02月15日
    浏览(34)
  • 【区块链共识协议论文】【拜占庭异步通信】【Chronos: An Efficient Asynchronous Byzantine Ordered Consensus】

    1、 版权归属:牛津大学出版社(Oxford University Press) 2、 笔者为共同作者之一,联系方式:E230047@e.ntu.edu.sg 3、 引用格式: 4、 代码仓库:见GitHub 第1页 第2页 第3页 第4页 第5页 第6页 第7页 第8页

    2024年02月20日
    浏览(44)
  • 车辆检测:An Efficient Wide-Range Pseudo-3D Vehicle Detection Using A Single Camera

    论文作者:Zhupeng Ye,Yinqi Li,Zejian Yuan 作者单位:Xi\\\'an Jiaotong University 论文链接:http://arxiv.org/abs/2309.08369v1 项目链接:https://www.youtube.com/watch?v=1gk1PmsQ5Q8 1)方向:车辆检测 2)应用:智能驾驶 3)背景:现有的基于矩形边界框(BBox)的车辆检测方法在感知宽范围物体,特别是远距

    2024年02月07日
    浏览(35)
  • RuntimeError: CUDA error: an illegal memory access was encountered

    后续发现其实是某张卡有问题, 0~3一共4个GPU,只在使用0号GPU的时候会出问题 0号卡似乎是被某个进程锁了,还是怎么样,不用那个卡就没事了 其实不难发现,我报错的位置基本都是从 gpu 往 cpu 转换的时候出现的问题。 因此考虑是不是cpu内存不太够了,所以内存访问发生错

    2024年01月17日
    浏览(58)
  • “大数据处理”的现状 Scaling up and out: Towards an efficient processing of big Data

    作者:禅与计算机程序设计艺术 Hadoop 是 Apache 基金会于 2007 年推出的开源分布式计算框架。它是一个通用计算平台,可用于存储、处理和分析大量的数据集。它是一个分布式文件系统(HDFS),一个资源管理器(YARN),和一些常用的组件如 MapReduce、Hive 和 Pig。在数据量达到海

    2024年02月08日
    浏览(48)
  • RAG:Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks 论文阅读

    2020 NeuralPS 文章地址:https://arxiv.org/abs/2005.11401 源码地址:GitHub - huggingface/transformers: 🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.       - 142 RAG 目录 0、背景 1、摘要 2、导言       3、结论 4、模型 5、实验 6、与REALM比较 7、想法         Language Mod

    2024年02月05日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包