聚合可以让我们极其方便的实现对数据的统计、分析、运算。例如:
什么品牌的手机最受欢迎?
这些手机的平均价格、最高价格、最低价格?
这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果
聚合种类
聚合常见的有三类:
-
桶(Bucket)聚合:用来对文档做分组
-
TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
-
Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
-
-
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
-
Avg:求平均值
-
Max:求最大值
-
Min:求最小值
-
Stats:同时求max、min、avg、sum等
-
-
管道(pipeline)聚合:其它聚合的结果为基础做聚合
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
DSL实现聚合
语句
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
- 设置size为0,结果中不包含文档,只包含聚合结果
- aggs定义聚合
- brandAgg给聚合起个名字
- terms聚合的类型,按照品牌值聚合,所以选择term
- field参与聚合的字段
- terms里面的sezi希望获取的聚合结果数量
发起请求的结果
聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。
我们可以指定order属性,自定义聚合的排序方式,按照_count降序排列
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "desc"
},
"size": 20
}
}
}
}
发起请求的结果, 按照_count降序排列。
限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。我们可以限定要聚合的文档范围,只要添加query条件即可。
只对200元以下的文档聚合
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
聚合得到的品牌明显变少了
Metric聚合语法
现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值
score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": {
"score_stats": {
"stats": {
"field": "score"
}
}
}
}
}
}
我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序,score_stats.avg对score聚合函数的平均值进行降序排序。
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"score_stats.avg": "desc"
}
},
"aggs": {
"score_stats": {
"stats": {
"field": "score"
}
}
}
}
}
}
小结
aggs代表聚合,与query同级
聚合必须的三要素:
-
聚合名称
-
聚合类型
-
聚合字段
聚合可配置属性有:
-
size:指定聚合结果数量
-
order:指定聚合结果排序方式
-
field:指定聚合字段
java代码实现聚合
搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的
controller类
import cn.itcast.hotel.pojo.PageResult;
import cn.itcast.hotel.pojo.RequestParams;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.List;
import java.util.Map;
@RestController
@RequestMapping("/hotel")
public class HotelController {
@Autowired
private IHotelService hotelService;
@PostMapping("filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
return hotelService.getFilters(params);
}
}
service类
import cn.itcast.hotel.mapper.HotelMapper;
import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.pojo.HotelDoc;
import cn.itcast.hotel.pojo.PageResult;
import cn.itcast.hotel.pojo.RequestParams;
import cn.itcast.hotel.service.IHotelService;
import com.alibaba.fastjson.JSON;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.geo.GeoPoint;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.functionscore.FunctionScoreQueryBuilder;
import org.elasticsearch.index.query.functionscore.ScoreFunctionBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.sort.SortBuilders;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
@Service
public class HotelService extends ServiceImpl<HotelMapper, Hotel> implements IHotelService {
@Autowired
private RestHighLevelClient client;
@Override
public Map<String, List<String>> getFilters(RequestParams params) {
try {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.query
// buildBasicQuery(params, request);
// 2.2.设置size
request.source().size(0);
// 2.3.聚合
buildAggregation(request);
// 3.发出请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析结果
Map<String, List<String>> result = new HashMap<>();
Aggregations aggregations = response.getAggregations();
// 4.1.根据品牌名称,获取品牌结果
List<String> brandList = getAggByName(aggregations, "brandAgg");
result.put("品牌", brandList);
// 4.2.根据品牌名称,获取品牌结果
List<String> cityList = getAggByName(aggregations, "cityAgg");
result.put("城市", cityList);
// 4.3.根据品牌名称,获取品牌结果
List<String> starList = getAggByName(aggregations, "starAgg");
result.put("星级", starList);
return result;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
private void buildAggregation(SearchRequest request) {
request.source().aggregation(AggregationBuilders
.terms("brandAgg")
.field("brand")
.size(100)
);
request.source().aggregation(AggregationBuilders
.terms("cityAgg")
.field("city")
.size(100)
);
request.source().aggregation(AggregationBuilders
.terms("starAgg")
.field("starName")
.size(100)
);
}
private List<String> getAggByName(Aggregations aggregations, String aggName) {
// 4.1.根据聚合名称获取聚合结果
Terms brandTerms = aggregations.get(aggName);
// 4.2.获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
// 4.3.遍历
List<String> brandList = new ArrayList<>();
for (Terms.Bucket bucket : buckets) {
// 4.4.获取key
String key = bucket.getKeyAsString();
brandList.add(key);
}
return brandList;
}
}
发送请求,获得结果文章来源:https://www.toymoban.com/news/detail-701327.html
文章来源地址https://www.toymoban.com/news/detail-701327.html
到了这里,关于elasticsearch的数据聚合的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!