直方图统计增强方法

这篇具有很好参考价值的文章主要介绍了直方图统计增强方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

直方图统计增强方法的原理:
  直方图统计增强是一种基于像素值分布的图像增强技术,通过调整像素值的分布来增强图像的对比度和细节。其原理是根据图像的直方图信息,将原始像素值映射到一个新的像素值域,从而改变图像的亮度和对比度。
直方图统计增强方法的意义:
  这种方法的目的是改善图像的视觉效果,使得图像中的细节更加清晰可见,从而提高图像在视觉上的识别和分析能力。通过将图像的像素值重新分布,使得图像的动态范围更好地覆盖了整个像素值域,凸显了图像中的细节,增强了图像的信息内容。
适用场景:
  直方图统计增强方法在以下场景中特别适用:

  1. 低对比度图像: 当图像的亮度范围分布不均匀,即图像的对比度较低时,直方图统计增强可以使得图像的像素值分布更加均匀,增强图像的对比度。
  2. 局部对比度调整: 有时候图像的一部分区域可能亮度较低,另一部分区域亮度较高。直方图统计增强可以通过针对不同区域使用不同的增强参数,实现局部对比度的调整。
  3. 图像细节增强: 当图像中的细节由于亮度过低或过高而不易分辨时,直方图统计增强可以突出这些细节,使得它们更加清晰可见。

公式:
  直方图统计增强的基本公式如下:
  给定一个原始图像 I ( x , y ) I(x, y) I(x,y),其像素值为 i i i,进行直方图统计增强后的图像为 I enhanced ( x , y ) I_{\text{enhanced}}(x, y) Ienhanced(x,y),其像素值为 i ′ i' i。增强函数可以表示为:
i ′ = T ( i ) = round ( c ⋅ i ) i' = T(i) = \text{round}(c \cdot i) i=T(i)=round(ci)
  其中, c c c是增强常数,可以通过调整来控制增强的强度。一般情况下, c > 1 c > 1 c>1 用于增强亮度, c < 1 c < 1 c<1用于降低亮度。函数 ( \text{round} ) 将结果四舍五入到最接近的整数,确保结果在合法的像素值范围内。
  另外,为了避免像素值越界,通常还会使用截断操作将增强后的像素值 ( i’ ) 限制在图像像素值域的合法范围内(通常是 [0, 255]):
i ′ = { 0 if  c ⋅ i < 0 255 if  c ⋅ i > 255 round ( c ⋅ i ) otherwise i' = \begin{cases} 0 & \text{if } c \cdot i < 0 \\ 255 & \text{if } c \cdot i > 255 \\ \text{round}(c \cdot i) & \text{otherwise} \end{cases} i= 0255round(ci)if ci<0if ci>255otherwise
  这样,直方图统计增强就可以通过调整增强常数 c c c 来改变图像的亮度和对比度,从而实现图像的增强,代码如下所示:文章来源地址https://www.toymoban.com/news/detail-701342.html

import cv2
import matplotlib.pyplot as plt
import numpy as np


def enhanceHistStat(image, const):
    enhanced_image = np.clip(image * const, 0, 255).astype(np.uint8)
    return enhanced_image

def enhance_Histstat(image):
    # 读取图像
    image = cv2.imread(image, flags=0)

    if image is None:
        print('Unable to load input_image!')
        return
    else:

        # 计算比例因子
        maxImg = image.max()
        maxROI = image[12:120, 12:120].max()
        const = maxImg / maxROI

        # 调用增强函数
        image_HSE = enhanceHistStat(image, const)
        image_Equ=cv2.equalizeHist(image)

        plt.figure(figsize=(10,6))

        plt.subplot(131),plt.title("Original image"),plt.axis('off')
        plt.imshow(image,cmap='gray',vmin=0,vmax=255)

        plt.subplot(132),plt.title("Global equalize histogram"),plt.axis('off')
        plt.imshow(image_Equ,cmap='gray',vmin=0,vmax=255)

        plt.subplot(133),plt.title("Histogram statistic enhance"),plt.axis('off')
        plt.imshow(image_HSE,cmap='gray',vmin=0,vmax=255)

        plt.show()

imgfile1='./Images/cat.jpg'
enhance_Histstat(imgfile1)

到了这里,关于直方图统计增强方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 描述性统计图表——直方图

    概念:直方图是频数直方图的简称,通常用来描述类别数据。它是用一系列宽度相等、高度不等的长方形表示数据的图。长方形的宽度表示数据范围的间隔,长方形的高度表示在给定间隔内的数据数。一般横轴表示数据类型,纵轴表示分布情况。直方图也可以被归一化以显示

    2024年02月06日
    浏览(56)
  • 【OpenCV学习笔记30】- OpenCV 中的直方图 - 直方图 - 4:直方图反投影

    这是对于 OpenCV 官方文档中 图像处理 的学习笔记。学习笔记中会记录官方给出的例子,也会给出自己根据官方的例子完成的更改代码,同样彩蛋的实现也会结合多个知识点一起实现一些小功能,来帮助我们对学会的知识点进行结合应用。 如果有喜欢我笔记的请麻烦帮我关注

    2024年03月26日
    浏览(55)
  • Matlab遍历文件及直方图统计

    参考链接: 使用MATLAB遍历文件 strtrim用法 strsplit用法 cell单元数据使用{}

    2024年02月15日
    浏览(54)
  • OpenCV10-图像直方图:直方图绘制、直方图归一化、直方图比较、直方图均衡化、直方图规定化、直方图反射投影

    图像直方图就是统计图像中每个灰度值的个数,之后将灰度值作为横轴,以灰度值个数或者灰度值所占比率作为纵轴的统计图。通过直方图,可以看出图像中哪些灰度值数目较多,哪些较少,可以通过一定的方法将灰度值较为集中的区域映射到较为稀疏的区域,从而使图像在

    2024年01月16日
    浏览(51)
  • 【OpenCV • c++】自定义直方图 | 灰度直方图均衡 | 彩色直方图均衡

      直方图广泛应用于很多计算机视觉处理当中。通过标记帧与帧之间显著的边缘和颜色的变化,可以检测视频中的场景变化。在每个兴趣点设置一个有相似特征的直方图所构成的“标签”,可以用来标记各种不同的事情,比如图像的色彩分布,物体边缘梯度模板等等。是计

    2024年02月08日
    浏览(51)
  • 【OpenCV • c++】直方图计算 | 绘制 H-S 直方图 | 绘制一维直方图 | 绘制 RGB 三色直方图

      直方图广泛应用于很多计算机视觉处理当中。通过标记帧与帧之间显著的边缘和颜色的变化,可以检测视频中的场景变化。在每个兴趣点设置一个有相似特征的直方图所构成的“标签”,可以用来标记各种不同的事情,比如图像的色彩分布,物体边缘梯度模板等等。是计

    2024年02月09日
    浏览(52)
  • 【opencv】教程代码 —Histograms_Matching(2)计算直方图、直方图比较、直方图均衡、模板匹配...

    计算直方图 直方图比较 图像进行直方图均衡化处理 模板匹配 1. calcHist_Demo.cpp 计算直方图 这段代码的功能是加载图像,分离图像的三个颜色通道,然后分别计算这三个通道的直方图,绘制出来并显示结果。直方图是图像中像素值分布的图形表示,可以用于图像分析或图像处

    2024年04月11日
    浏览(50)
  • (数字图像处理MATLAB+Python)第五章图像增强-第二节:基于直方图修正的图像增强

    基于直方图修正的图像增强 :是一种常见的图像处理方法。该方法通过对图像的像素值分布进行调整,以改善图像的对比度和亮度等视觉效果。具体地,直方图校正方法将图像的像素值转换为一个新的值域范围,使得像素值的分布更加均匀,从而增强图像的细节和对比度。这

    2023年04月19日
    浏览(51)
  • Matlab之统计数据分布并绘制直方图函数histogram

    直方图是一种将数据分组到条柱中的条形图。该函数可以统计数据在划分区间内的数量分布,同时以直方图的形式展示统计结果。 创建直方图X的图。该函数使用 一种自动分箱算法,返回具有统一宽度的分箱, 选择以涵盖元素范围并揭示 分布的基础形状。 将条柱显示为矩形

    2024年04月14日
    浏览(44)
  • python柱状图、直方图和饼状图统计学生成绩

    Python的matplotlib库具有很强大的绘图功能,可以利用这个库函数来进行学生成绩统计。假如有一个班的某科学生成绩如表1所示,可以用柱状图、直方图和饼状图三种方式来进行统计分析。下边介绍一下操作步骤。 表1 学生成绩表 学号 分数 20221001 61 20221002 68 20221003 74 20221004 7

    2024年02月11日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包