自然语言处理学习笔记(十)———— 停用词过滤

这篇具有很好参考价值的文章主要介绍了自然语言处理学习笔记(十)———— 停用词过滤。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.停用词

2.实现思路

3.全部实现代码:

4.运行结果:


1.停用词

        汉语中有一类没有多少意义的词语,比如助词“的”、连词“以及”、副词“甚至”、语气词“吧”,称为停用词。一个句子去掉了停用词并不影响理解。停用词视具体任务的不同而不同,比如在网站系统中,一些非法的敏感词也视作停用词。因此,停用词过滤就是一个常见的预处理过程。

2.实现思路

考虑到词典中含有单字词语,用双数组词典树存储字典更划算:

def load_from_file(path):
    """
    从词典文件加载DoubleArrayTrie
    :param path: 词典路径
    :return: 双数组trie树
    """
    map = JClass('java.util.TreeMap')()  # 创建TreeMap实例
    with open(path, encoding='utf-8') as src:
        for word in src:
            word = word.strip()  # 去掉Python读入的\n
            map[word] = word
    return JClass('com.hankcs.hanlp.collection.trie.DoubleArrayTrie')(map)


def load_from_words(*words):
    """
    从词汇构造双数组trie树
    :param words: 一系列词语
    :return:
    """
    map = JClass('java.util.TreeMap')()  # 创建TreeMap实例
    for word in words:
        map[word] = word
    return JClass('com.hankcs.hanlp.collection.trie.DoubleArrayTrie')(map)

加载停用词后,会得到一颗双数组字典树。针对分词结果,遍历每个词语,若他在字典树中,则删除。

def remove_stopwords_termlist(termlist, trie):
    return [term.word for term in termlist if not trie.containsKey(term.word)]

在敏感词过滤的场景下,通常需要将敏感词替换为特殊字符串,如***,可以先分词在替换,也可以不分词直接利用接口查找敏感词并完成替换。

def replace_stropwords_text(text, replacement, trie):
    searcher = trie.getLongestSearcher(JString(text), 0)
    offset = 0
    result = ''
    while searcher.next():
        begin = searcher.begin
        end = begin + searcher.length
        if begin > offset:
            result += text[offset: begin]
        result += replacement
        offset = end
    if offset < len(text):
        result += text[offset:]
    return result

3.全部实现代码:

from jpype import JString

from pyhanlp import *


def load_from_file(path):
    """
    从词典文件加载DoubleArrayTrie
    :param path: 词典路径
    :return: 双数组trie树
    """
    map = JClass('java.util.TreeMap')()  # 创建TreeMap实例
    with open(path, encoding='utf-8') as src:
        for word in src:
            word = word.strip()  # 去掉Python读入的\n
            map[word] = word
    return JClass('com.hankcs.hanlp.collection.trie.DoubleArrayTrie')(map)


def load_from_words(*words):
    """
    从词汇构造双数组trie树
    :param words: 一系列词语
    :return:
    """
    map = JClass('java.util.TreeMap')()  # 创建TreeMap实例
    for word in words:
        map[word] = word
    return JClass('com.hankcs.hanlp.collection.trie.DoubleArrayTrie')(map)


def remove_stopwords_termlist(termlist, trie):
    return [term.word for term in termlist if not trie.containsKey(term.word)]


def replace_stropwords_text(text, replacement, trie):
    searcher = trie.getLongestSearcher(JString(text), 0)
    offset = 0
    result = ''
    while searcher.next():
        begin = searcher.begin
        end = begin + searcher.length
        if begin > offset:
            result += text[offset: begin]
        result += replacement
        offset = end
    if offset < len(text):
        result += text[offset:]
    return result


if __name__ == '__main__':
    HanLP.Config.ShowTermNature = False
    trie = load_from_file(HanLP.Config.CoreStopWordDictionaryPath)
    text = "停用词的意义相对而言无关紧要吧。"
    segment = DoubleArrayTrieSegment()
    termlist = segment.seg(text)
    print("分词结果:", termlist)
    print("分词结果去除停用词:", remove_stopwords_termlist(termlist, trie))
    trie = load_from_words("的", "相对而言", "吧")
    print("不分词去掉停用词", replace_stropwords_text(text, "**", trie))

4.运行结果:

分词结果:[停用,词,的,意义,相对而言,无关紧要,吧,。]
分词结果去掉停用词:[停用,词,意义,无关紧要]
不分词去掉停用词:停用词**意义**无关紧要**。文章来源地址https://www.toymoban.com/news/detail-701415.html

到了这里,关于自然语言处理学习笔记(十)———— 停用词过滤的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自然语言处理学习笔记(八)———— 准确率

    目录 1.准确率定义 2.混淆矩阵与TP/FN/FP/TN 3. 精确率 4.召回率 5.F1值 6.中文分词的P、R、F1计算 7.实现 1.准确率定义         准确率是用来衡量一个系统的准确程度的值,可以理解为一系列评测指标。当预测与答案的数量相等时,准确率指的是系统做出正确判断的次数除以总

    2024年02月09日
    浏览(43)
  • 自然语言处理学习笔记(七)————字典树效率改进

    目录 1. 首字散列其余二分的字典树 2.双数组字典树 3.AC自动机(多模式匹配) (1)goto表 (2)output表 (3)fail表 4.基于双数组字典树的AC自动机         字典树的数据结构在以上的切分算法中已经很快了,但还有一些基于字典树的算法改进,把分词速度推向了千万字每秒的

    2024年02月10日
    浏览(45)
  • 自然语言处理学习笔记(三)————HanLP安装与使用

    目录 1.HanLP安装 2.HanLP使用 (1)预下载  (2)测试 (3)命令行  (4)测试样例 3.pyhanlp可视化 4. HanLP词性表 1.HanLP安装  HanLP的 Python接口由 pyhanlp包提供,其安装只需一句命令: 安装完成 2.HanLP使用 (1)预下载 第一次使用pyhanlp时,会自动下载许多hanlp的jar包(包含许多算法

    2024年02月14日
    浏览(54)
  • 自然语言处理学习笔记(十一)————简繁转换与拼音转换

    目录 1.简繁转换 2.拼音转换 1.简繁转换 简繁转换指的是简体中文和繁体中文之间的相互转换。可能有的人觉得,这很简单, 按字转换 就好了。HanLP提供了这样的朴素实现 CharTable, 用来执行字符正规化(繁体-简体,全角-半角,大写-小写) 事实上,汉字历史悠久,地域复杂,

    2024年02月07日
    浏览(47)
  • 自然语言处理学习笔记(九)———— OVV Recall Rate与 IV Recall Rate

    目录 1.OVV Recall Rate 2. IV Recall Rate 1.OVV Recall Rate         OOV指的是“未登录词”(Out Of Vocabulary),或者俗称的“新词”,也即词典未收录的词汇。如何准确切分00V,乃至识别其语义,是整个NLP领域的核心难题之一。 2. IV Recall Rate         IV指的是“登录词”(In  V

    2024年02月09日
    浏览(42)
  • 以ChatGPT为例进行自然语言处理学习——入门自然语言处理

    ⭐️我叫忆_恒心,一名喜欢书写博客的在读研究生👨‍🎓。 如果觉得本文能帮到您, 麻烦点个赞 👍呗! 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支持一下呗。👍⭐️❤️ Qt5.9专栏 定期更新Qt的一些项目Demo

    2023年04月23日
    浏览(83)
  • 机器学习——自然语言处理(NLP)一

    机器学习——自然语言处理(NLP)一 自然语言处理(Natural Language Processing,NLP)是一门研究如何使计算机能够理解和处理人类语言的学科,其中有许多常用的算法和技术,本文则主要介绍比较基础的TF-IDF算法和朴素贝叶斯算法。 一种用于评估一个词语对于一个文件集或一个

    2024年02月09日
    浏览(51)
  • 【精品】NLP自然语言处理学习路线(知识体系)

    当前,大规模预训练语言模型的强大对话问答、文本生成能力,将自然语言处理(NLP)的研究和应用推向了新一轮的热潮。NLP是计算机科学、人工智能和语言学等学科交叉的前沿领域。NLP的应用和研究范围非常的广泛,个人是没有找到那种特别好的、详细且成体系的文档的。

    2024年02月09日
    浏览(51)
  • 读十堂极简人工智能课笔记06_自然语言处理

    1.4.3.1. 能让真人腾出手来处理难度更大的咨询 2.1.3.1. 在研究儿童的语言能力发展后总结出来的理论 2.1.3.2. 儿童虽然能够学会流利地说话,但他们在学习过程里其实根本没有接收到足够的信息 2.1.3.2.1. 所谓的“刺激的贫乏” 2.1.3.3. 儿童能够发展语言技能的唯一途径是他们

    2024年02月19日
    浏览(58)
  • 【自然语言处理】【多模态】ALBEF:基于动量蒸馏的视觉语言表示学习

    ALBEF:基于动量蒸馏的视觉语言表示学习 《Align before Fuse:Vision and Language Representation Learning with Momentum Distillation》 论文地址:https://arxiv.org/pdf/2107.07651.pdf 相关博客: 【自然语言处理】【多模态】多模态综述:视觉语言预训练模型 【自然语言处理】【多模态】CLIP:从自然语

    2024年02月03日
    浏览(137)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包