bert ranking pairwise demo

这篇具有很好参考价值的文章主要介绍了bert ranking pairwise demo。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

下面是用bert 训练pairwise rank 的 demo文章来源地址https://www.toymoban.com/news/detail-701431.html

import torch
from torch.utils.data import DataLoader, Dataset
from transformers import BertModel, BertTokenizer
from sklearn.metrics import pairwise_distances_argmin_min

class PairwiseRankingDataset(Dataset):
    def __init__(self, sentence_pairs, tokenizer, max_length):
        self.input_ids = []
        self.attention_masks = []
        
        for pair in sentence_pairs:
            encoded_pair = tokenizer(pair, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt')
            self.input_ids.append(encoded_pair['input_ids'])
            self.attention_masks.append(encoded_pair['attention_mask'])
        
        self.input_ids = torch.cat(self.input_ids, dim=0)
        self.attention_masks = torch.cat(self.attention_masks, dim=0)
        
    def __len__(self):
        return len(self.input_ids)
    
    def __getitem__(self, idx):
        input_id = self.input_ids[idx]
        attention_mask = self.attention_masks[idx]
        return input_id, attention_mask

class BERTPairwiseRankingModel(torch.nn.Module):
    def __init__(self, bert_model_name):
        super(BERTPairwiseRankingModel, self).__init__()
        self.bert = BertModel.from_pretrained(bert_model_name)
        self.dropout = torch.nn.Dropout(0.1)
        self.fc = torch.nn.Linear(self.bert.config.hidden_size, 1)
        
    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = self.dropout(outputs[1])
        logits = self.fc(pooled_output)
        return logits.squeeze()

# 初始化BERT模型和分词器
bert_model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(bert_model_name)

# 示例输入数据
sentence_pairs = [
    ('I like cats', 'I like dogs'),
    ('The sun is shining', 'It is raining'),
    ('Apple is a fruit', 'Car is a vehicle')
]

# 超参数
batch_size = 8
max_length = 128
learning_rate = 1e-5
num_epochs = 5

# 创建数据集和数据加载器
dataset = PairwiseRankingDataset(sentence_pairs, tokenizer, max_length)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 初始化模型并加载预训练权重
model = BERTPairwiseRankingModel(bert_model_name)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

# 训练模型
model.train()

for epoch in range(num_epochs):
    total_loss = 0
    
    for input_ids, attention_masks in dataloader:
        optimizer.zero_grad()
        
        logits = model(input_ids, attention_masks)
        
        # 计算损失函数(使用对比损失函数)
        pos_scores = logits[::2]  # 正样本分数
        neg_scores = logits[1::2]  # 负样本分数
        loss = torch.relu(1 - pos_scores + neg_scores).mean()
        
        total_loss += loss.item()
        
        loss.backward()
        optimizer.step()
    
    print(f"Epoch {epoch+1}/{num_epochs} - Loss: {total_loss:.4f}")

# 推断模型
model.eval()

with torch.no_grad():
    embeddings = model.bert.embeddings.word_embeddings(dataset.input_ids)
    pairwise_distances = pairwise_distances_argmin_min(embeddings.numpy())

# 输出结果
for i, pair in enumerate(sentence_pairs):
    pos_idx = pairwise_distances[0][2 * i]
    neg_idx = pairwise_distances[0][2 * i + 1]
    pos_dist = pairwise_distances[1][2 * i]
    neg_dist = pairwise_distances[1][2 * i + 1]
    
    print(f"Pair: {pair}")
    print(f"Positive example index: {pos_idx}, Distance: {pos_dist:.4f}")
    print(f"Negative example index: {neg_idx}, Distance: {neg_dist:.4f}")
    print()

到了这里,关于bert ranking pairwise demo的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《Python深度学习基于Pytorch》学习笔记

    有需要这本书的pdf资源的可以联系我~ 这本书不是偏向于非常详细的教你很多函数怎么用,更多的是交个基本使用,主要是后面的深度学习相关的内容。 1.Numpy提供两种基本的对象:ndarray(n维数组对象)(用于储存多维数据)和ufunc(通用函数对象,用于处理不同的数据)。

    2024年02月09日
    浏览(42)
  • 【Python】使用Anaconda创建PyTorch深度学习虚拟环境

    使用Anaconda Prompt 查看环境: 创建虚拟环境(python3.10): 激活创建的环境: 在虚拟环境内安装PyTorch: 【Python】CUDA11.7/11.8安装PyTorch三件套_cuda 11.6对应pytorch-CSDN博客 文章浏览阅读3.3w次,点赞29次,收藏169次。安装PyTorch_cuda 11.6对应pytorch https://blog.csdn.net/ericdiii/article/details/125

    2024年01月22日
    浏览(63)
  • 【深度学习】预训练语言模型-BERT

            BERT 是一种预训练语言模型(pre-trained language model, PLM),其全称是Bidirectional Encoder Representations from Transformers。下面从语言模型和预训练开始展开对预训练语言模型BERT的介绍。 1-1 语言模型         语言模型 :对于任意的词序列,它能够计算出这个序列是一句

    2023年04月08日
    浏览(69)
  • 深度学习环境完整安装(Python+Pycharm+Pytorch cpu版)

            在这里,我们将引导您逐步完成深度学习环境的完整安装,助您踏上从Python到PyTorch的探索之旅。通过本博客,您将轻松掌握如何设置Python环境、使用Pycharm进行开发以及安装Pytorch,成为一名具备完整深度学习环境的实践者。让我们一起开始吧! 文章目录(如果有会的

    2024年02月03日
    浏览(51)
  • 深入理解深度学习——BERT派生模型:ALBERT(A Lite BERT)

    分类目录:《深入理解深度学习》总目录 预训练语言模型的一个趋势是使用更大的模型配合更多的数据,以达到“大力出奇迹”的效果。随着模型规模的持续增大,单块GPU已经无法容纳整个预训练语言模型。为了解决这个问题,谷歌提出了ALBERT,该模型与BERT几乎没有区别,

    2024年02月10日
    浏览(53)
  • 深度学习环境配置系列文章(二):Anaconda配置Python和PyTorch

    第一章 专业名称和配置方案介绍 第二章 Anaconda配置Python和PyTorch 第三章 配置VS Code和Jupyter的Python环境 第四章 配置Windows11和Linux双系统 第五章 配置Docker深度学习开发环境 Anaconda有着强大的包管理和环境管理的功能,使用后可以方便地使用和切换不同版本的Python和PyTorch等科学

    2024年01月23日
    浏览(61)
  • 【深度学习】BERT变种—百度ERNIE 1.0

          ERNIE: Enhanced Representation through Knowledge Integration是百度在2019年4月的时候,基于BERT模型,做的进一步优化,在中文的NLP任务上得到了state-of-the-art的结果。         ERNIE 是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知

    2024年02月08日
    浏览(41)
  • 【深度学习】BERT变种—百度ERNIE 3.0

             预训练的模型在各种自然语言处理(NLP)任务中取得了最先进的成果。扩大预训练语言模型的规模可以提高其泛化能力。然而,现有的大规模预训练模型,主要依赖纯文本学习,缺乏大规模知识指导学习,模型能力存在局限。ERNIE 3.0 进一步挖掘大规模预训练模型

    2024年02月09日
    浏览(32)
  • Python与深度学习:Keras、PyTorch和Caffe的使用和模型设计

      深度学习已经成为当今计算机科学领域的热门技术,而Python则是深度学习领域最受欢迎的编程语言之一。在Python中,有多个深度学习框架可供选择,其中最受欢迎的包括Keras、PyTorch和Caffe。本文将介绍这三个框架的使用和模型设计,帮助读者了解它们的优势、特点和适用场

    2024年02月09日
    浏览(39)
  • 深入理解深度学习——BERT(Bidirectional Encoder Representations from Transformers):BERT的结构

    分类目录:《深入理解深度学习》总目录 相关文章: · BERT(Bidirectional Encoder Representations from Transformers):基础知识 · BERT(Bidirectional Encoder Representations from Transformers):BERT的结构 · BERT(Bidirectional Encoder Representations from Transformers):MLM(Masked Language Model) · BERT(Bidirect

    2024年02月11日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包