《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用

这篇具有很好参考价值的文章主要介绍了《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1--并发服务器端

2--进程

2-1--进程的相关概念

2-2--fork()创建进程

2-3--僵尸进程

2-4--wait()和waitpid()销毁僵尸进程

3--信号处理

3-1--signal()函数

3-2--sigaction()函数

3--3--利用信号处理技术消灭僵尸进程

4--基于多任务的并发服务器

5--分割 TCP 的 I/O 程序


1--并发服务器端

并发服务器端主要有以下三类:

        ① 多进程服务器:通过创建多个进程提供服务;

        ② 多路复用服务器:通过捆绑并统一管理I/O对象提供服务;

        ③ 多线程服务器:通过生成与客户端等量的线程提供服务;

2--进程

2-1--进程的相关概念

进程的相关概念:

        ① 进程的定义如下:占用内存空间的正在运行的程序;

        ② 从操作系统的角度看,进程是程序流的基本单位,若创建多个进程,则操作系统将同时运行;

        ③ 对于 CPU 而言,核的个数与可同时运行的进程数相同;若进程数超过核数,进程将分时使用 CPU 资源;

        ④ 无论进程是如何创建的,所有进程都会从操作系统中分配到进程 ID,其值为大于 2 的整数;

2-2--fork()创建进程

#include <unistd.h>
pid_t fork(void);

// 成功时返回进程 ID,失败时返回 -1

        fork() 函数会复制父进程的进程副本给创建的子进程,两个进程都将执行 fork() 函数调用后的语句;具体执行的内容可根据 fork() 函数的返回值进行区分,对于父进程 fork() 函数返回子进程的进程 ID,对于子进程 fork() 函数返回 0;

// gcc fork.c -o fork
// ./fork
#include <stdio.h>
#include <unistd.h>

int gval = 10;
int main(int argc, char *argv[]){
    __pid_t pid;
    int lval = 20;
    gval++, lval += 5;

    pid = fork();
    if(pid == 0){ // 对于子进程,fork返回0,因此执行以下内容
        gval += 2, lval += 2;
    }
    else{ // 对于父进程,执行以下内容
        gval -= 2, lval -= 2;
    }

    if(pid == 0){
        // 对于子进程,复制父进程的进程副本,则最初 gval = 11, lval = 25;
        // 执行 += 2 后,gval = 13, lval = 27;
        printf("Child Proc: [%d, %d] \n", gval, lval);
    }
    else{
        // 对于父进程,执行 -= 2后,gval = 9, lval = 23;
        printf("Parent Proc: [%d %d] \n", gval, lval);
    }
    return 0;
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

2-3--僵尸进程

        一般进程完成工作后都应被立即销毁,但部分进行由于各种原因导致不能及时销毁,就成为了僵尸进程,其会占用系统中的重要资源;

        终止僵尸进程的两种方式:① 传递参数给 exit 函数并调用 exit 函数;② main 函数中执行 return 语句并返回值;

        向 exit 函数传递的参数值和 main 函数 return 语句的返回值都会传递给操作系统,而操作系统不会立即销毁子进程,直到把这些返回值传递给父进程;这种不会被立即销毁的子进程就是僵尸进程

        此外,操作系统不会主动将返回值传递给父进程;只有父进程主动发起请求时,操作系统才会将子进程的返回值传递给父进程;因此,如果父进程未主动要求获得子进程的结束状态值,操作系统就不会销毁子进程,子进程就一直处于僵尸进程状态;

// gcc zombie.c -o zombie
// ./zombie
#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[]){
    __pid_t pid = fork();
    if(pid == 0){
        puts("Hi, I am a child process");
    }
    else{
        // 父进程终止时,子进程也会被同时销毁
        // 本案例通过延缓父进程的终止时间,来让子进程进入僵尸进程状态
        printf("Child Process ID: %d \n", pid);
        sleep(30);
    }

    if(pid == 0){
        puts("End child process");
    }
    else{
        puts("End parent process");
    }
    return 0;
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

        通过 ps au 可以观测到在父进程睡眠的时间里,子进程成为了僵尸进程(Z+状态);

2-4--wait()和waitpid()销毁僵尸进程

        为了销毁僵尸子进程,父进程必须主动请求获取子进程的返回值;

        父进程调用 wait() 函数 和 waitpid() 函数可以主动获取子进程的返回值;

#include <sys/wait.h>

pid_t wait(int* statloc);
// 成功时返回终止的子进程 ID, 失败时返回 -1;
// 子进程的返回值会保存到 statloc 所指的内存空间

// WIFEXITED() 子进程正常终止时返回 true
// WEXITSTATUS() 返回子进程的返回值

        父进程调用 wait() 函数时,如果没有已终止的子进程,则父进程的程序将会阻塞,直至有子进程终止来返回值;

// gcc wait.c -o wait
// ./wait
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char* argv[]){
    int status;
    __pid_t pid = fork();

    if(pid == 0){
        return 3; // 第一个子进程返回3
    }
    else{
        printf("Child PID: %d \n", pid); // 第一个子进程的 ID
        pid = fork(); // 创建第二个子进程
        if(pid == 0){
            exit(7); // 第二个子进程返回7
        }
        else{
            printf("Child PID : %d \n", pid); // 第二个子进程的 ID
            wait(&status); // 主动请求获取子进程的返回值
            if(WIFEXITED(status)){
                printf("Chile send one: %d \n", WEXITSTATUS(status));
            }
            wait(&status); // 主动请求获取子进程的返回值
            if(WIFEXITED(status)){
                printf("Child send two: %d \n", WEXITSTATUS(status));
            }
            sleep(30); // 这时候父进程选择睡眠,子进程也不会成为僵尸进程
        }
    }
    return 0;
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

        wait() 函数会引起程序阻塞,而 waitpid() 函数不会引起阻塞;

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int* statloc, int options);
// 成功时返回终止的子进程的ID(或0),失败时返回-1
// pid 表示等待终止的目标子进程的 ID,传递 -1 时与 wait() 相同,即可以等待任意子进程终止
// statloc 存放子进程返回结果的地址空间
// options 设置为 WNOHANG 时,即使没有终止的子进程,父进程也不会进入阻塞状态,而是返回 0 并结束函数
// gcc waitpid.c -o waitpid
// ./waitpid
#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
    int status;
    __pid_t pid = fork();
    if(pid == 0){
        sleep(15);
        return 24;
    }
    else{
        // 没有终止的子进程时,返回0,则一直循环调用waitpid()
        // 直到有终止的子进程来跳出循环
        while(!waitpid(-1, &status, WNOHANG)){
            sleep(3);
            puts("sleep 3sec.");
        }
        if(WIFEXITED(status)){
            printf("Child send %d \n", WEXITSTATUS(status));
        }
        return 0;
    }
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

3--信号处理

        上述父进程调用 wait() 函数会阻塞,而调用 waitpid() 函数也必须不断调用(因为不知道子进程何时终止),这也同样会影响父进程的工作效率;

        通过信号处理机制,可以解决上述问题;信号表示在特定事件发生时由操作系统向进程发送(通知)的消息

        因此可以通过注册信号,当子进程终止时,让操作系统将子进程终止的消息发送给父进程,这时候父进程才请求获取子进程的返回值;

3-1--signal()函数

#include <signal.h>
void (*signal(int signo, void (*func)(int)))(int);

// 第一个参数 signo 表示特殊情况信息
// 第二个参数表示特殊情况发生后,要调用的函数的地址值(指针)

// 常见特殊情况
// 1. SIGALRM 表示已到调用 alarm 函数注册的时间
// 2. SIGINT 表示遇到了 CTRL+C 的情况
// 3. SIGCHLD 表示遇到了子进程终止的情况

#include <unistd.h>
unsigned int alarm(unsigned int seconds);
// 返回 0 或以秒为单位的距离 SIGALRM 信号发生的所剩时间(即还剩下多长时间就会发生 SIGALRM 信号时间)
// 经过 seconds 秒后会发生 SIGALRM 信号事件

        发生信号事件时,将会唤醒由于调用 sleep 函数而进入阻塞状态的进程;即:即使还没到 sleep 函数规定的事件也会被强制唤醒,而进程一旦唤醒后就不会再进入睡眠状态;

// gcc signal.c -o signal
// ./signal

#include <stdio.h>
#include <unistd.h>
#include <signal.h>

void timeout(int sig){
    if(sig == SIGALRM){
        puts("Time out!");
    }
    alarm(2);
}

void keycontrol(int sig){
    if(sig == SIGINT){
        puts("CTRL+C pressed");
    }
}

int main(int argc, char *argv[]){
    int i;
    signal(SIGALRM, timeout);
    signal(SIGINT, keycontrol);
    alarm(2);

    for(i = 0; i < 3; i++){
        puts("wait...");
        sleep(100); // 不会真的睡眠 100s,因为alarm函数会产生SIGALRM信号事件,从而唤醒进程
    }
    return 0;
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

3-2--sigaction()函数

        sigaction() 函数的功能类似于 signal() 函数,但 sigaction() 更稳定;因为 signal() 函数在不同操作系统中可能存在区别,但 sigaction() 在不同 UNIX 系统中完全相同;

#include <signal.h>

int sigaction(int signo, const struct sigaction* act, struct sigaction* oldact);
// 成功时返回0,失败时返回 -1
// signo 用于传递信号信息
// act 对应于 signo 的信号处理函数
// oldact 获取之前注册的信号处理函数的指针,不用时传递0

struct sigaction{
    void (*sa_handler)(int); // 信号处理函数的指针
    sigset_t sa_mask; // 初始化为0
    int sa_flags; // 初始化为0
}
// gcc sigaction.c -o sigaction
// ./sigaction

#include <stdio.h>
#include <unistd.h>
#include <signal.h>

void timeout(int sig){
    if(sig == SIGALRM){
        puts("Time out!");
    }
    alarm(2);
}

int main(int argc, char* argv[]){
    int i;
    struct sigaction act;
    act.sa_handler = timeout;
    sigemptyset(&act.sa_mask); // 调用sigemptyset()将sa_mask的所有位初始化为0
    act.sa_flags = 0; // sa_flags也初始化为0
    sigaction(SIGALRM, &act, 0);
    alarm(2);
    for(int i = 0; i < 3; i++){
        puts("wait...");
        sleep(100);
    }
    return 0;
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

3--3--利用信号处理技术消灭僵尸进程

// gcc remove_zombie.c -o remove_zombie
// ./remove_zombie

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>

void read_childproc(int sig){
    int status;
    pid_t id = waitpid(-1, &status, WNOHANG); // 等待任意子线程结束
    if(WIFEXITED(status)){ // 判断子线程是否正常终止
        printf("Remove proc id: %d \n", id);
        printf("Child send: %d \n", WEXITSTATUS(status)); // 打印子线程的返回值
    }
}

int main(int argc, char *argv[]){
    pid_t pid;
    struct sigaction act;
    act.sa_handler = read_childproc; // 设置信号处理函数
    sigemptyset(&act.sa_mask);
    act.sa_flags = 0;
    sigaction(SIGCHLD, &act, 0); // 调用sigaction(),当遇到子线程结束的信号时,调用信号处理函数

    pid = fork();
    if(pid == 0){ // 子线程执行区域
        puts("Hi! I'm child process");
        sleep(10);
        return 12;
    }
    else{
        printf("Child proc id: %d \n", pid);
        pid = fork();
        if(pid == 0){ // 另一个子线程执行区域
            puts("Hi! I'm child process");
            sleep(10);
            return 24;
        }
        else{
            int i;
            printf("Child proc id: %d \n", pid);
            for(int i = 0; i < 5; i++){
                puts("wait...");
                sleep(5);
            }
        }
    }
    return 0;
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

4--基于多任务的并发服务器

        每当有客户端请求服务时,回声服务器端都创建子进程以提供服务;

        使用 fork() 创建进程时,子进程会复制父进程拥有的所有资源,因此无需额外传递文件描述符;

// gcc echo_mpserv.c -o echo_mpserv
// ./echo_mpserv 9190

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30

void error_handling(char *message){
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

void read_childproc(int sig){
    __pid_t pid;
    int status;
    pid = waitpid(-1, &status, WNOHANG);
    printf("remove proc id: %d \n", pid);
}

int main(int argc, char* argv[]){
    int serv_sock, clnt_sock;
    struct sockaddr_in serv_adr, clnt_adr;

    __pid_t pid;

    struct sigaction act; // 信号
    socklen_t adr_sz;
    int str_len, state;
    char buf[BUF_SIZE];
    if(argc != 2){
        printf("Usage : %s <port>\n", argv[0]);
        exit(1);
    }

    // 防止僵尸进程
    act.sa_handler = read_childproc; //设置信号处理函数
    sigemptyset(&act.sa_mask);
    act.sa_flags = 0;
    state = sigaction(SIGCHLD, &act, 0);

    serv_sock = socket(PF_INET, SOCK_STREAM, 0); // 创建 tcp socket
    memset(&serv_adr, 0, sizeof(serv_adr));
    serv_adr.sin_family = AF_INET;
    serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);
    serv_adr.sin_port = htons(atoi(argv[1]));

    if(bind(serv_sock, (struct sockaddr*) &serv_adr, sizeof(serv_adr)) == -1){
        error_handling("bind() error"); 
    } 
    if(listen(serv_sock, 5) == -1){
        error_handling("listen() error");
    }

    while(1){
        adr_sz = sizeof(clnt_adr);
        clnt_sock = accept(serv_sock, (struct sockaddr*)&clnt_adr, &adr_sz);
        if(clnt_sock == -1){
            continue;
        }
        else{
            puts("new client connected...");
        }
        // 每当有客户端请求服务时,clnt_sock 不为 -1
        // 因此会执行 fork() 函数创建子进程,并由子进程向客户端提供服务
        pid = fork(); 
        if(pid == -1){
            close(clnt_sock);
            continue;
        }
        if(pid == 0){ // 子进程运行区域
            close(serv_sock); // 将复制过来的父进程中的服务器文件描述符销毁
            while((str_len = read(clnt_sock, buf, BUF_SIZE)) != 0){
                write(clnt_sock, buf, str_len);
            }
            close(clnt_sock);
            puts("client disconnected...");
            return 0;
        }
        else{ // 父进程运行区域
            // 因为客户端的文件描述符已经复制到子进程中
            // 由子进程处理客户端的内容,因此父进程需要销毁客户端的文件描述符
            close(clnt_sock); 
        }
    }
    close(serv_sock);
    return 0;
}

《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用,网络编程笔记,tcp/ip

5--分割 TCP 的 I/O 程序

        客户端通过 fork() 创建子进程,将 I/O 分割;客户端的父进程负责接收数据,额外创建的子进程负责发送数据;

        分割后,不同进程分别负责输入和输出,因此客户端是否从服务器端接收完数据都可以进行传输;文章来源地址https://www.toymoban.com/news/detail-701752.html

// gcc echo_mpclient.c -o echo_mpclient
// ./echo_mpclient 127.0.0.1 9190

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30

void error_handling(char *message){
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

void read_routine(int sock, char *buf){
    while(1){
        int str_len = read(sock, buf, BUF_SIZE);
        if(str_len == 0) return;
        buf[str_len] = 0;
        printf("Message from server: %s", buf);
    }
}

void write_routine(int sock, char* buf){
    while(1){
        fgets(buf, BUF_SIZE, stdin);
        if(!strcmp(buf, "q\n") || !strcmp(buf, "Q\n")){
            shutdown(sock, SHUT_WR); // 调用 shutdown 函数向服务器端传递 EOF
            return;
        }
        write(sock, buf, strlen(buf));
    }
}

int main(int argc, char *argv[]){
    int sock;
    pid_t pid;
    char buf[BUF_SIZE];
    struct sockaddr_in serv_adr;

    if(argc != 3){
        printf("Usage : %s <IP> <port>\n", argv[0]);
        exit(1);
    }

    sock = socket(PF_INET, SOCK_STREAM, 0); // 创建 tcp socket
    memset(&serv_adr, 0, sizeof(serv_adr));
    serv_adr.sin_family = AF_INET;
    serv_adr.sin_addr.s_addr = inet_addr(argv[1]);
    serv_adr.sin_port = htons(atoi(argv[2]));

    if(connect(sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr)) == -1){
        error_handling("connect() error!");
    }

    pid = fork(); // 创建子进程实现 I/O 分离
    if(pid == 0){ // 子进程写数据到服务器端
        write_routine(sock, buf);
    }
    else{ // 父进程从服务器端中读取数据
        read_routine(sock, buf);
    }
    close(sock);
    return 0;
}   

到了这里,关于《TCP/IP网络编程》阅读笔记--并发多进程服务端的使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《TCP/IP网络编程》阅读笔记--getsockopt和setsockopt的使用

    目录 1--Socket的多种可选项 2--getsocketopt() 3--setsockopt() 4--代码实例         Socket 拥有多种可选项,其可分为 SOL_SOCKET 层,IPPROTO_IP 层和IPPROTO_TCP 层等,一般通过 getsocketopt() 和 setsockopt() 函数进行获取和设置; ① 基于  getsockopt() 函数,利用设置协议层为 SOL_SOCKET 和 SO_TYPE 可选项

    2024年02月09日
    浏览(23)
  • 《TCP/IP网络编程》阅读笔记--基于TCP的服务器端/客户端

    目录 1--TCP/IP协议栈 2--TCP服务器端默认函数调用顺序 3--TCP客户端的默认函数调用顺序 4--Linux实现迭代回声服务器端/客户端 5--Windows实现迭代回声服务器端/客户端 6--TCP原理 7--Windows实现计算器服务器端/客户端         TCP/IP协议栈共分 4 层,可以理解为数据收发分成了 4 个层

    2024年02月10日
    浏览(32)
  • 《TCP/IP网络编程》阅读笔记--基于UDP的服务器端/客户端

    目录 1--TCP和UDP的主要区别 2--基于 UDP 的数据 I/O 函数 3--基于 UDP 的回声服务器端/客户端 4--UDP客户端Socket的地址分配 5--UDP存在数据边界 6--UDP已连接与未连接的设置 ① TCP 提供的是可靠数据传输服务,而 UDP 提供的是不可靠数据传输服务; ② UDP 在结构上比 TCP 更简洁,其不会

    2024年02月09日
    浏览(42)
  • 《TCP/IP网络编程》阅读笔记--基于Windows实现Hello Word服务器端和客户端

    目录 1--Hello Word服务器端 2--客户端 3--编译运行 3-1--编译服务器端 3-2--编译客户端 3-3--运行 运行结果:

    2024年02月10日
    浏览(36)
  • 多进程并发TCP服务器模型(含客户端)(网络编程 C语言实现)

    摘要 :大家都知道不同pc间的通信需要用到套接字sockte来实现,但是服务器一次只能收到一个客户端发来的消息,所以为了能让服务器可以接收多个客户端的连接与消息的传递,我们就引入了多进程并发这样一个概念。听名字就可以知道--需要用到进程,当然也有多线程并发

    2024年02月17日
    浏览(33)
  • Linux网络编程——C++实现进程间TCP/IP通信

    地址接口 1、通用地址接口 共16字节 = 2字节地址类型 + 14字节地址数据 2、自定义地址接口 地址转换 1、需要将点分字符串ip转化为程序ip,使用inet_addr函数: 2、字节序转换 地址接口配置中的端口需要字节序转换,网络规定使用大端字节序。 地址接口配置 1、socket:创建套接

    2024年02月20日
    浏览(28)
  • 计算机网络套接字编程实验-TCP多进程并发服务器程序与单进程客户端程序(简单回声)

    1.实验系列 ·Linux NAP-Linux网络应用编程系列 2.实验目的 ·理解多进程(Multiprocess)相关基本概念,理解父子进程之间的关系与差异,熟练掌握基于fork()的多进程编程模式; ·理解僵尸进程产生原理,能基于|sigaction()或signal(),使用waitpid()规避僵尸进程产生; ·

    2024年02月12日
    浏览(28)
  • Linux 网络编程学习笔记——一、TCP/IP 协议族

    数据链路层实现了网卡接口的网络驱动程序,以处理数据在物理媒介(以太网、令牌环等)上的传输,不同的物理网络具有不同的电气特性,网络驱动程序隐藏了这些细节,为上层协议提供一个统一的接口。最常用的协议是 ARP(Address Resolve Protocol,地址解析协议)和 RARP(

    2024年02月02日
    浏览(57)
  • 多线程|多进程|高并发网络编程

    多进程并发服务器是一种经典的服务器架构,它通过创建多个子进程来处理客户端连接,从而实现并发处理多个客户端请求的能力。 概念: 服务器启动时,创建主进程,并绑定监听端口。 当有客户端连接请求时,主进程接受连接,并创建一个子进程来处理该客户端连接。

    2024年02月07日
    浏览(24)
  • 11. TCP并发网络编程

    本文主要介绍TCP并发网络的编程,重点介绍io多路复用的epoll实现 要完成一个完整的 TCP/IP 网络通信过程,需要使用一系列函数来实现。这些函数包括 bind、listen、accept 和 recv/send 等。下面是它们的配合流程: 创建套接字(socket):使用 socket 函数创建一个套接字,指定协议族和

    2024年02月07日
    浏览(24)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包