GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING

这篇具有很好参考价值的文章主要介绍了GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文是LLM系列文章,针对《GREASELM: GRAPH REASONING ENHANCED
LANGUAGE MODELS FOR QUESTION ANSWERING》的翻译。

摘要

回答关于文本叙事的复杂问题需要对所陈述的上下文和作为其基础的世界知识进行推理。然而,作为大多数现代QA系统的基础的预训练语言模型(LM)并不能有力地表示概念之间的潜在关系,而这是推理所必需的。虽然知识图谱(KG)经常被用来用世界知识的结构化表示来扩充LMs,但如何有效地融合和推理KG表示和语言上下文仍然是一个悬而未决的问题,因为语言上下文提供了情境约束和细微差别。在这项工作中,我们提出了GREASELM,这是一种新的模型,它在多层模态交互操作上融合了来自预训练的LM和图神经网络的编码表示。来自两种模式的信息传播到另一种模式,允许语言上下文表示以结构化的世界知识为基础,并允许上下文中的语言细微差别(例如否定、对冲)告知知识的图形表示。我们在常识推理(即CommonsenseQA、OpenbookQA)和医学问答(即MedQA USMLE)领域的三个基准测试上的结果表明,GREASELM可以更可靠地回答需要对情境约束和结构化知识进行推理的问题,甚至优于8倍。

1 引言

2 相关工作

3 提出的方法:GREASELM

4 实验设置

5 实验结果

6 结论

在本文中,我们介绍了GREASELM,这是一种新的模型,通过语言模型和知识图谱中的知识之间的联合信息交换,实现交互式融合。实验结果表明,在来自多个领域(常识和医学)的标准数据集上,与先前的KG+LM和仅LM基线相比,性能优越。我们的分析表明,改进了能力建模问题,表现出文本的细微差别,如否定和对冲。文章来源地址https://www.toymoban.com/news/detail-701866.html

到了这里,关于GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读:Multimodal Graph Transformer for Multimodal Question Answering

    论文名 :Multimodal Graph Transformer for Multimodal Question Answering 论文链接 尽管 Transformer模型 在视觉和语言任务中取得了成功,但它们经常隐式地从大量数据中学习知识,而不能直接利用结构化的输入数据。另一方面, 结构化学习方法 ,如集成先验信息的图神经网络(gnn),几乎无法

    2024年02月04日
    浏览(43)
  • A Survey of Knowledge-Enhanced Pre-trained Language Models

    本文是LLM系列的文章,针对《A Survey of Knowledge-Enhanced Pre-trained Language Models》的翻译。 预训练语言模型(PLM)通过自监督学习方法在大文本语料库上进行训练,在自然语言处理(NLP)的各种任务中都取得了良好的性能。然而,尽管具有巨大参数的PLM可以有效地拥有从大量训练

    2024年02月09日
    浏览(40)
  • A Survey on Knowledge-Enhanced Pre-trained Language Models

    自然语言处理(NLP)已经通过使用BERT等预训练语言模型(plm)发生了革命性的变化。尽管几乎在每个NLP任务中都创造了新的记录, 但plm仍然面临许多挑战,包括可解释性差,推理能力弱,以及在应用于下游任务时需要大量昂贵的注释数据。通过将外部知识集成到plm中,知识增强预

    2024年02月11日
    浏览(43)
  • Knowledge Graph Prompting for Multi-Document Question Answering

    本文是LLM系列文章,针对《Knowledge Graph Prompting for Multi-Document Question Answering》的翻译。 大型语言模型的“预训练、提示、预测”范式在开放领域问答(OD-QA)中取得了显著的成功。然而,很少有工作在多文档问答(MD-QA)的场景中探索这种范式,这项任务需要彻底理解不同文

    2024年02月09日
    浏览(40)
  • 《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》全文翻译

    题目:《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》 作者:Jason Wei and et al. 会议: NeurlPS 2022 内容概述:论文探索如何生成一个思想链(一系列中间推理步骤)来显着提高大型语言模型执行复杂推理的能力。 我们探索生成一条思维链(一系列中间推理步骤)如何显

    2024年02月09日
    浏览(53)
  • 文献阅读:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

    文献阅读:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models 1. 文章简介 2. 具体方法 3. 实验结果 1. 数学推理 1. 实验设计 2. 实验结果 3. 消解实验 4. 鲁棒性考察 2. 常识推理 1. 实验设计 2. 实验结果 3. 符号推理 1. 实验设计 2. 实验结果 4. 结论 思考 文献链接:https://arxiv.or

    2024年02月10日
    浏览(44)
  • Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement

    文章链接 核心思想是通过instruction让LLM来优化问题本身,从而达到更好的效果,且这种针对问题的优化可以跟其他的prompt技术,如CoT或者Least-to-Most相结合。 作者提出了一些重述问题的准则: (1)简短:问题不要太长,确保容易理解 (2)清晰:问题表述清晰,能量化的部分

    2024年02月08日
    浏览(40)
  • (论文阅读)Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

    论文地址 https://openreview.net/pdf?id=_VjQlMeSB_J         我们探索如何生成一个思维链——一系列中间推理步骤——如何显著提高大型语言模型执行复杂推理的能力。 特别是,我们展示了这种推理能力如何通过一种称为思维链提示的简单方法自然地出现在足够大的语言模型中,

    2024年02月08日
    浏览(101)
  • 《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》【大模型思维链】

    思维链,是一系列中间推理步骤,可以显著提高大语言模型执行复杂推理的能力。 思维链:一种简单的提示方法,通过一系列的中间推理步骤,可以大大提高大语言模型执行复杂推理的能力。 下图为使用标准提示词和使用思维链提示词的输出的区别: 与传统Prompt的区别:

    2024年04月23日
    浏览(30)
  • 【论文阅读】GPT4Graph: Can Large Language Models Understand Graph Structured Data?

    作者:Jiayan Guo, Lun Du, Hengyu Liu 文章链接:GPT4Graph: Can Large Language Models Understand Graph Structured Data? An Empirical Evaluation and Benchmarking 代码链接:GPT4Graph: Can Large Language Models Understand Graph Structured Data? An Empirical Evaluation and Benchmarking 通过使用自然语言描述图并向LLM提供文本描述,直接

    2024年01月20日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包