基于Python+Flask+Echart实现二手车数据分析展示

这篇具有很好参考价值的文章主要介绍了基于Python+Flask+Echart实现二手车数据分析展示。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者主页:编程指南针

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师

主要内容:Java项目、Python项目、前端项目、人工智能与大数据、简历模板、学习资料、面试题库、技术互助

收藏点赞不迷路  关注作者有好处

文末获取源码 

项目编号:BS-Python-010 

一,环境介绍

语言环境:Python3.8

开发工具:IDEA或PyCharm

二,项目简介

二手市场数据分析是指对二手市场中的交易数据进行整理、分析和解读,以从中获取有用的信息并作出决策。以下是可能的分析方向:

1. 商品价格分析:通过对不同商品在市场上的价格进行分析,了解到商品的市场价值、价格波动趋势等信息,以便于制定购买或销售策略。

2. 商品销售量分析:通过对不同商品在市场上的销售量进行分析,了解到商品的受欢迎程度、销售趋势等信息,以便于制定采购或促销策略。

3. 购买者分析:通过对购买者的性别、年龄、地域等信息进行分析,了解到不同消费群体的消费习惯、消费偏好等信息,以便于制定精准的市场推广策略。

4. 品牌分析:通过对不同品牌的销售量、市场份额等信息进行分析,了解到不同品牌在市场上的竞争力和发展趋势,以便于制定品牌推广策略。

5. 交易行为分析:通过对交易行为的数据进行分析,了解到不同时间段、不同地域、不同商品的交易状况,以便于制定更加合理的交易策略。

6. 竞争分析:通过对同类产品的竞争情况进行分析,了解到不同品牌、不同价格的竞争对手,以便于制定更加有效的市场竞争策略。

本项目基于Python+Echart实现二手车市场数据分析和大屏展示,通过采集到的二手车相关数据,读取采集的数据文件,进行数据分析和展示。采用Flask  Web框架开发实现动态WEB页面数据加载和展示。

三,系统展示

大屏数据展示分析

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

分模块介绍实现:

城市前十功能

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

对应代码:

#汽车品牌

import pandas as pd
df=pd.read_csv("二手车基本信息.csv")

df_title = df.apply(lambda x:x['标题'].split(' ')[0], axis=1)
title_list = df_title.value_counts().index.tolist()[:10]
title_num = df_title.value_counts().tolist()[:10]
from pyecharts import options as opts
from pyecharts.charts import Bar

c = (
    Bar()
    .add_xaxis(title_list)
    .add_yaxis("汽车品牌", title_num)
    .set_colors(["cyan","gray"])
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title="汽车品牌数量前十"),
    )
    .render("bigdata/cardata/汽车品牌前十.html")

)

城市分布

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

实现代码:

#城市前十
import pandas as pd
df=pd.read_csv("二手车基本信息.csv")
city_num = df['城市'].value_counts().tolist()[:10]
city_type = df['城市'].value_counts().index.tolist()[:10]
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c = (
    Pie()
    .add("", [list(z) for z in zip(city_type, city_num)])
    .set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple","black","cyan","gray"])
    .set_global_opts(title_opts=opts.TitleOpts(title="城市前十"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("bigdata/cardata/城市前十.html")
)

年份分布

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

代码实现:

#年份分布

import pandas as pd

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

df=pd.read_csv("二手车基本信息.csv")
df.head()
df['年份'].value_counts().values.tolist()
year_num =df['年份'].value_counts().values.tolist()
year_type=df['年份'].value_counts().index.tolist()



c = (
    Pie()
    .add("", [list(z) for z in zip(year_type, year_num)])
    .set_global_opts(title_opts=opts.TitleOpts(title="年份分布"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("bigdata/cardata/年份分布.html")
)

购买渠道及价格

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

代码实现:

#车辆价格

import pandas as pd

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

df=pd.read_csv("二手车基本信息.csv")

def price(x):
    if x<=5.0:
        return '五万元以下'
    elif 5.0<x<=10.0:
        return '5-10万'
    elif 10.0<x<=15.0:
        return '10-15万'
    elif 15.0<x<=20.0:
        return '15-20万'
    elif 20.0<x<=30.0:
        return '20-30万'
    else:
        return '30万以上'
df['价格分级']=df['价格(万元)'].apply(lambda x:price(x))
price_num =df['价格分级'].value_counts().tolist()
price_list=df['价格分级'].value_counts().index.tolist()
# print(price_num)


c = (
    Line()
    .add_xaxis(price_list)
    .add_yaxis("价格", price_num)
    .set_global_opts(title_opts=opts.TitleOpts(title="车辆价格"))
    .render("bigdata/cardata/车辆价格.html")
)

二手车保修及里程

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

代码实现 

#保修占比
import pandas as pd

from pyecharts import options as opts
from pyecharts.charts import Liquid

df=pd.read_csv("二手车基本信息.csv")
df["是否保修"].fillna("无保修",inplace=True)
per=df['是否保修'].value_counts()['无保修']/len(df)
c = (
    Liquid()
        .add("lq", [1 - per])
        .set_global_opts(title_opts=opts.TitleOpts(title="保修占比"))
        .render("bigdata/cardata/保修占比.html")

)

四,相关作品展示

基于Java开发、Python开发、PHP开发、C#开发等相关语言开发的实战项目

基于Nodejs、Vue等前端技术开发的前端实战项目

基于微信小程序和安卓APP应用开发的相关作品

基于51单片机等嵌入式物联网开发应用

基于各类算法实现的AI智能应用

基于大数据实现的各类数据管理和推荐系统

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

 基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言

 基于Python+Flask+Echart实现二手车数据分析展示,python项目,python,开发语言文章来源地址https://www.toymoban.com/news/detail-702048.html

到了这里,关于基于Python+Flask+Echart实现二手车数据分析展示的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python【二手车价格预测案例】数据挖掘

    随着代步工具的普及,“买卖车”需求激增。但对于部分预算有限的个体或家庭而言,购置一辆二手车更为明智。二手车的巨大供给需求催生了近年来日益壮大的二手车市场,但二手车的售卖面临着价格漂浮的问题。 因此,我们的目标是根据卖家或买家提供的参数信息计算价

    2023年04月09日
    浏览(56)
  • 【Python实战】Python采集二手车数据——超详细讲解

    今天,我们将采集某二手车数据,通过这个案例,加深我们对xpath的理解。通过爬取数据后数据分析能够直观的看到二手车市场中某一品牌的相对数据,能够了解到现在的二手车市场情况,通过分析数据看到二手车的走势,车商就可以利用这些数据进行定价,让想买二手车却

    2024年02月01日
    浏览(37)
  • Python二手车价格预测(二)—— 模型训练及可视化

    一、Python数据分析-二手车数据获取用于机器学习二手车价格预测 二、Python二手车价格预测(一)—— 数据处理         前面分享了二手车数据获取的内容,又对获取的原始数据进行了数据处理,相关博文可以访问上面链接。许多朋友私信我问会不会出模型,今天模型basel

    2024年02月05日
    浏览(53)
  • python笔记16_实例练习_二手车折旧分析p1

    python数据分析练习,具体数据不放出。 分析实践很简单。目的不是做完,而是讲清楚每一步的目的和连带的知识点(所以才叫学习笔记) 原始数据格式:csv文件 原始数据结构: 数据格式 字段名 int(无用信息) 无 String che300_brand_name float new_price String maker_type float lowest_pric

    2024年02月07日
    浏览(91)
  • python笔记17_实例演练_二手车折旧分析p2

    …… 书接上文 探查车龄为5年的车辆,折旧价值与车辆等级的关系。 这里用到了 DataFrame 的 groupby 函数 ,这个函数对于数据处理的重要程度无需赘言。 groupby 必须配合聚合函数 同时使用,否则只能得到一个 DataFrameGroupBy 类型的玩意儿。 这里是可以只传 groupby 参数,不写聚合

    2024年02月07日
    浏览(43)
  • Java实现二手车交易系统 JAVA+Vue+SpringBoot+MySQL

    基于JAVA+Vue+SpringBoot+MySQL的二手车交易系统,分为管理后台和用户网页,包含了二手车档案、预约订单模块、预订单模块、留言板模块和车辆资讯模块,还包含系统自带的用户管理、部门管理、角色管理、菜单管理、日志管理、数据字典管理、文件管理、图表展示等基础模块,

    2024年02月22日
    浏览(46)
  • 【Python爬虫实战】汽车城最好的十款车,第一名竟是这款车...Python教你一键采集二手车数据信息实现数据可视化展示哦~(附视频教程)

    驾考不易,天天早起去练车,无论烈日还是下雨,通通都在室外进行,但想要拿证,一定要坚 持不懈的去练车。 粉丝白嫖源码福利,请移步至CSDN社区或文末公众hao即可免费。 小编就是在一复一日的练习中,终于得到了我人生中以为不可能考证之驾照到手了! 这不?驾照到

    2024年02月02日
    浏览(41)
  • 微信小程序之二手车交易商城平台的设计与实现 后台php+mysql(附论文 源码 讲解)

    摘 要 在移动互联网的迅速发展推进下,微信成了人们生活中不可缺少的一款信息交流和沟通平台。而微信小程序的推出,便得现在人们在日常生活中更多的是通过手机微信平台进行安装各种各样的APP小程序来满足个人所需。二手车微信小程序是基于满足当前人们对二手车买

    2024年02月06日
    浏览(54)
  • 【毕业设计】微信小程序之二手车交易商城平台的设计与实现 后台php+mysql(附论文 源码 讲解)

    摘 要 在移动互联网的迅速发展推进下,微信成了人们生活中不可缺少的一款信息交流和沟通平台。而微信小程序的推出,便得现在人们在日常生活中更多的是通过手机微信平台进行安装各种各样的APP小程序来满足个人所需。二手车微信小程序是基于满足当前人们对二手车买

    2024年02月07日
    浏览(59)
  • 天池长期赛:二手车价格预测(422方案分享)

    前言 一、赛题介绍及评测标准 二、数据探索(EDA) 1.读取数据、缺失值可视化 2.特征描述性统计 3.测试集与验证集数据分布 4.特征相关性 三、数据清洗 四、特征工程 1.构建时间特征 2.匿名特征交叉 3.平均数编码 五、建模调参 六、模型融合 总结 赛题属于回归类型,相比于

    2024年02月01日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包