【爬虫】8.1. 使用OCR技术识别图形验证码

这篇具有很好参考价值的文章主要介绍了【爬虫】8.1. 使用OCR技术识别图形验证码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

使用OCR技术识别图形验证码

图形验证码是最早出现的验证方式,现在依然很常见,一般由4位左右的字母或者数字组成。本章节使用的网站时https://captcha7.scrape.center/,这个网站的验证码相对来说比较平整,没有过多的干扰线和干扰点,文字也没有大幅度的变形和旋转,因此比较好作为案例进行分析,对于这类验证码,可以使用OCR技术识别。参考书籍依然是Python3网络爬虫开发实战(第三版)。

1. OCR技术

OCR,即Optical Character Recognition,中文叫做光学字符识别,是指使用电子设备(例如扫描仪和数码相机)检查打印再纸上的字符,通过检查暗、亮的模式确定字符形状,然后使用字符识别方法将形状转化位计算机文字。现在OCR技术已经广泛应用于生产活动中,如文档识别,证件识别,字幕识别,文档搜索等。当然用来识别本节所述的图形验证码也没有问题。

2. 准备工作

再本节的学习中需要导入tesserocr库,这个库的安装需要参考https://setup.scrape.center/tesserocr.另外,还需要安装Selenium、Pillow、Numpy和retrying库用来模拟登录、处理图像和重试操作,可以使用pip3工具安装这些库。 安装好这些库就可以开始了。

2.1. tesserocr安装异常

如果安装异常的话就换一个,可以参照我的,我用的库不是上面的,而是pytesseract,我觉得两者差别不大

  • 打开tesseract下载的网页 tesseract,下载最后一个(应该是)tesseract-ocr-w64-setup-v5.3.0.2.221214这个版本,接着就是安装,安装过程中自己记好自己安装在哪里!!!然后就是选择语言包,建议不要全选会下载很慢。
  • 将你记下来的安装路径的整个文件地址给添加到环境变量中去。
  • 接着python安装pytesseract,找到pytesseract.py文件,打开并找到tesseract_cmd这个变量(大约在30行左右)将里面的值修改为tesseract.exe文件的地址(这个文件在你一开始记下的文件地址里面,查找文件夹就找到了,不用进其他的文件夹,注意转义字符)。
  • 搞定上述之后在cmd窗口运行tesseract --list-langs可以看到你下载的语言包。
  • 重启,然后运行你的示例代码就行了,如果还不可以,那你去看其他下载教程

3. 验证码图片爬取

这个网页使用JavaScript渲染出来的,所以我们进行爬取的时候使用selenium自动化测试工具。

from selenium import webdriver
from selenium.webdriver.common.by import By
from PIL import Image
from io import BytesIO
import time

def demo():
    browser = webdriver.Chrome()
    browser.get("https://captcha7.scrape.center")
    time.sleep(3)
    captcha = browser.find_element(By.CSS_SELECTOR,"#captcha")
    image = Image.open(BytesIO(captcha.screenshot_as_png))
    image.show()

if __name__ == "__main__":
    demo()

这里使用了我很少见的BytesIO,这是一个类,它的功能是读取二进制数据流,而图片就是二进制数据流;还有就是captcha.screenshot_as_png这部分的功能就是将当前页面的内容捕获为一张图像,以bytes二进制数据保存;最后调用image的show方法来显式验证码的图像。

4. 无障碍识别测试

首先我们选用两张图片来进行测试,第一张是有换行和明显空格,第二张是一张验证码。
【爬虫】8.1. 使用OCR技术识别图形验证码,Python3WebSpider,爬虫,ocr,python,tesseract
【爬虫】8.1. 使用OCR技术识别图形验证码,Python3WebSpider,爬虫,ocr,python,tesseract

我们运行下面代码:

import pytesseract
from PIL import Image
image1 = Image.open("tesseract_tt1.png")
result1 = pytesseract.image_to_string(image1)
image2 = Image.open("tesseract_tt2.png")
result2 = pytesseract.image_to_string(image2)
print(result1, end= '')
print("=========")
print(result2, end= '')
Demons
Lin
Ss ZzTU
=========
2034

我们可以看到在输出SZTU这部分时候出现了SsZz这样大小写都输出的情况,这是因为pytesseract库在识别大小写字母时候很难准确识别出大小写,你可以采取其他办法来执行,这里就不列出来。

5. 错误识别

我选取到了一张图片,如下所示:
【爬虫】8.1. 使用OCR技术识别图形验证码,Python3WebSpider,爬虫,ocr,python,tesseract

import pytesseract
from PIL import Image
image = Image.open("error.png")
result = pytesseract.image_to_string(image)
print(result, end= '')
04-8 d.

可以看到这个输出结果明显不是我们想要的,这是因为OCR识别技术是通过检查暗、亮的模式确定字符形状,不是我们想当然的用脑子来看。所以,我们需要做一些额外处理,把干扰信息去掉,我们观察发现,图片里哪些造成干扰的点,其颜色大多比文本的颜色更浅,因此可以通过颜色将干扰点去掉。首先将保存的图片转化为数组,看一下维度:

from PIL import Image
import numpy as np
image = Image.open("error.png")
print(np.array(image).shape)
print(image.mode)
(38, 112, 4)
RGBA

从结果上可以看出,这个图片其实是一个三维数组,38和112代表图片的高和宽,4则是每个像素点的表示向量,那为什么是4呢?因为最后一维是一个长度为4的数组分别表示R(红)G(绿)B(蓝)A(透明度),即一个像素点由4个数字表示。那为什么是RGBA而不是RGB或者其他的呢?因为image.mode是RGBA,即由透明通道的真彩色。

mode属性定义了图片的类型和像素的位宽,一共由9种类型:

  • 1:像素用1位表示,Python中表示为True或False,即二值化。
  • L:像素用8位表示,取值位0-255,表示灰度图像,数字越小,颜色越黑。
  • P:像素用8位表示,即调色板数据。
  • RGB:像素用3X8位表示,即真彩色。
  • RGBA:像素用4X8位标识,即有透明通道的真彩色。
  • CMYK:像素用4X8位表示,即印刷四色模式。
  • YCbCr:像素用3X8位表示,即彩色视频格式。
  • I:像素用32位整型表示。
  • F:像素用32位浮点型表示。

为了方便处理,可以把RGBA转化位更简单的L,即把图片转化位灰度图像。往图片对象的convert方法中传入L即可,代码如下表示:

image = image.convert('L')
image.show()

我们选择把图片转化位灰度图像,然后根据阈值删除图片上的干扰点,成功识别出验证码,代码如下:

from PIL import Image
import numpy as np

image = Image.open("error.png")
image = image.convert('L')
threshold = 90
array = np.array(image)
array = np.where(array> threshold, 255, 0)
image = Image.fromarray((array.astype('uint8')))
# image.show()
result = pytesseract.image_to_string(image)
print(result)

这里先将变量threshold赋值位50.它代表灰度的阈值。接着将图片转化位Numpy数组,利用Numpy的where方法对数组进行筛选和处理,其中将灰度大于阈值的图片的像素设置为255表示白色,否则为0,表示黑色。

6. 识别实战:

import time
import re
import pytesseract
from selenium import webdriver
from io import BytesIO
from PIL import Image
from retrying import retry
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
import numpy as np


def preprocess(image):
    image = image.convert('L')
    array = np.array(image)
    array = np.where(array > 105, 255, 0)
    image = Image.fromarray(array.astype('uint8'))
    return image


@retry(stop_max_attempt_number=10, retry_on_result=lambda x: x is False)
def login():
    browser.get('https://captcha7.scrape.center/')
    browser.find_element(By.CSS_SELECTOR, '.username input[type="text"]').send_keys('admin')
    browser.find_element(By.CSS_SELECTOR, '.password input[type="password"]').send_keys('admin')
    captcha = browser.find_element(By.CSS_SELECTOR,'#captcha')
    image = Image.open(BytesIO(captcha.screenshot_as_png))
    image = preprocess(image)
    image.show()
    captcha = pytesseract.image_to_string(image)
    print(captcha)
    captcha = re.sub('[^A-Za-z0-9]', '', captcha)
    browser.find_element(By.CSS_SELECTOR, '.captcha input[type="text"]').send_keys(captcha)
    browser.find_element(By.CSS_SELECTOR, '.login').click()
    try:
        WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//h2[contains(., "登录成功")]')))
        time.sleep(5)
        browser.close()
        return True
    except TimeoutException:
        return False


if __name__ == '__main__':
    browser = webdriver.Chrome()
    login()

7. 参数设置

在使用 pytesseract 时,你可以使用以下参数:

  1. lang: 这个参数用于指定 OCR 使用的语言。默认为 ‘eng’,表示英文。如果你的验证码是英文的,那么你可以保持这个默认值。如果验证码是其他语言的,你需要指定相应的语言代码。例如,中文的语言代码是 ‘chi_sim’。
  2. config: 这个参数用于指定 tesseract 的配置文件。你可以使用它来调整 OCR 的行为。例如,你可以设置 tesseract 只识别数字和大写字母。
  3. nice: 这个参数用于指定 OCR 的质量。值的范围是 0-3,0 表示最快但质量最低,3 表示最慢但质量最高。默认值是 0。如果你的验证码很难识别,你可能需要将这个值设为 3。

这些参数可以在调用 pytesseract.image_to_string 时通过关键字参数的方式指定。例如:

captcha = pytesseract.image_to_string(image, lang='chi_sim', config='--psm 10', nice=3)

另外,你也可以使用 pytesseract.image_to_data 函数,它比 image_to_string 更灵活。image_to_data 函数返回一个包含了 OCR 结果的数据结构,你可以从这个数据结构中提取你需要的信息。例如,你可以提取每个单词的置信度,然后只保留置信度高的单词。

还有其他的识别技巧可以学习,这里给出CSDN博客我觉得挺好的一篇:

借助Tesseract-OCR进行文本检测(1)

借助Tesseract-OCR进行文本检测(2)文章来源地址https://www.toymoban.com/news/detail-702055.html

到了这里,关于【爬虫】8.1. 使用OCR技术识别图形验证码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python爬虫技术系列-05字符验证码识别

    OCR(Optical Character Recognition,光学字符识别)是指使用扫描仪或数码相机对文本资料进行扫描成图像文件,然后对图像文件进行分析处理,自动识别获取文字信息及版面信息的软件。一般情况下,对于字符型验证码的识别流程如下:主要过程可以分解为五个步骤: 图片清理 ,

    2024年02月04日
    浏览(54)
  • Python通用验证码识别OCR库ddddocr的安装使用

    之前写了一篇关于java使用tess4j进行图片文字识别.md的,对于应付简单的数字识别还是能应付,但总体效果、识别率很一般,后来同事找到了这一篇写的,(亲测好用便捷)Python通用验证码识别OCR库ddddocr的安装使用教程,试用了下确实效果要好很多,因此也记录一下,算是白嫖了

    2024年02月05日
    浏览(52)
  • C# PaddleInference OCR 验证码识别

    目录 说明 效果 项目 测试图片 代码 下载  C# PaddleInference OCR 验证码识别 自己训练的模型,只针对测试图片类型,准确率99%    VS2022+.net4.8+OpenCvSharp4+Sdcb.PaddleInference using OpenCvSharp; using Sdcb.PaddleInference.Native; using Sdcb.PaddleInference; using System; using System.Collections.Generic; using System.

    2024年02月16日
    浏览(36)
  • 验证码识别DLL ,滑块识别SDK,OCR图片转文字,机器视觉找物品

    验证码识别DLL ,滑块识别SDK 你们用过哪些OCR提取文字,识图DLL,比如Opencv,Labview机器视觉找物品之类?   

    2024年02月11日
    浏览(40)
  • 【OpenCV+OCR】计算机视觉:识别图像验证码中指定颜色文字

    【作者主页】: 吴秋霖 【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作! 【作者推荐】:对JS逆向感兴趣的朋友可以关注《爬虫JS逆向实战》,对分布式爬虫平台感兴趣的朋友可以关注《分布式爬虫平台搭建

    2024年02月05日
    浏览(53)
  • OCR文字识别技术

    OCR全称是optical character recognition,中文光学字符识别。 主要技术是:把图像形状转变为文本字符。 简单来说,OCR技术就是通过图像处理和模式识别技术对光学的字符进行识别,即,对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。 OCR 支持各

    2024年02月08日
    浏览(45)
  • OCR(Optical Character Recognition,光学字符识别)技术详解

    OCR(Optical Character Recognition,光学字符识别)技术是一种将图像中的文字信息转换为文本的技术。在计算机视觉和人工智能领域,OCR 技术是一个非常重要的应用,它可以帮助我们自动化处理文本信息,提高工作效率。 在本文中,我们将介绍如何使用 Java 和 Tesseract OCR 库来实现

    2024年02月08日
    浏览(48)
  • Jmeter验证码图片识别注册接口压力测试实战_压测时,登录需要传图形验证码

    先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7 深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前! 因此收集整理了一份《2024年最新软件测试全套学习资料》

    2024年04月22日
    浏览(55)
  • 利用先进的条形码识别和 OCR 技术改善机场行李处理

    机场每年处理数百万件行李,主要航空公司每家运输超过 1 亿件行李。每年有 2500 万件行李被错误处理,正确处理至关重要。使用最好的技术是关键,首先是从机场到飞机的正确转乘。 行李分拣 Dynamsoft 的客户是一家机场行李分拣解决方案提供商。这家航空公司软件提供商不

    2024年01月17日
    浏览(44)
  • C#实战:基于腾讯OCR技术实现企业证书识别和数据提取实践

    在当今数字化时代,OCR(Optical Character Recognition)识别技术正发挥着越来越重要的作用。OCR技术通过将图像中的文字转化为可编辑的文本形式,实现了对大量纸质文档的数字化处理和信息提取。常见的有企业资质证书的识别到身份证、护照等各类证件的自动识别等方面,OCR技

    2024年02月10日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包