【设备树笔记整理7】实践操作

这篇具有很好参考价值的文章主要介绍了【设备树笔记整理7】实践操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 使用设备树给DM9000网卡_触摸屏指定中断

1.1 修改方法

        根据设备节点的compatible属性,在驱动程序中构造/注册 platform_driver,在 platform_driver 的 probe 函数中获得中断资源。

1.2 实验方法

以下是修改好的代码:第6课第1节_网卡_触摸屏驱动\001th_dm9000\dm9dev9000c.c

第6课第1节_网卡_触摸屏驱动\002th_touchscreen\s3c_ts.c

分别上传到内核如下目录:

drivers/net/ethernet/davicom
drivers/input/touchscreen

(1)编译内核

(2)使用新的uImage启动

(3)测试网卡

ifconfig eth0 192.168.1.101
ping 192.168.1.1

(4)测试触摸屏

hexdump /dev/evetn0 // 然后点击触摸屏

1.3 图示 

(1)图1

【设备树笔记整理7】实践操作,linux设备树,linux

(2)图2

【设备树笔记整理7】实践操作,linux设备树,linux

(3)图3

【设备树笔记整理7】实践操作,linux设备树,linux

2 在设备树中时钟的简单使用

2.1 笔记

(1)设备树中定义了各种时钟,在文档中称之为"Clock providers",比如:

	clocks: clock-controller@4c000000 {
		compatible = "samsung,s3c2440-clock";
		reg = <0x4c000000 0x20>;
		#clock-cells = <1>;      // 想使用这个clocks时要提供1个u32来指定它, 比如选择这个clocks中发出的LCD时钟、PWM时钟
	};

(2)设备需要时钟时,它是"Clock consumers",它描述了使用哪一个"Clock providers"中的哪一个时钟(id),比如:

    fb0: fb@4d000000{
        compatible = "jz2440,lcd";
        reg = <0x4D000000 0x60>;
        interrupts = <0 0 16 3>;
        clocks = <&clocks HCLK_LCD>;  // 使用clocks即clock-controller@4c000000中的HCLK_LCD		
	};

(3)驱动中获得/使能时钟:

	// 确定时钟个数
	int nr_pclks = of_count_phandle_with_args(dev->of_node, "clocks",
						"#clock-cells");
	// 获得时钟
	for (i = 0; i < nr_pclks; i++) {
		struct clk *clk = of_clk_get(dev->of_node, i);
	}

	// 使能时钟
	clk_prepare_enable(clk);

	// 禁止时钟
	clk_disable_unprepare(clk);

(4)参考文档:

  • 内核 Documentation/devicetree/bindings/clock/clock-bindings.txt
  • 内核 Documentation/devicetree/bindings/clock/samsung,s3c2410-clock.txt

2.2 图示 

【设备树笔记整理7】实践操作,linux设备树,linux

【设备树笔记整理7】实践操作,linux设备树,linux

3 在设备树中pinctrl的简单使用 

3.1 笔记

3.1.1 几个概念

(1)Bank

        以引脚名为依据, 这些引脚分为若干组, 每组称为一个Bank,比如s3c2440里有GPA、GPB、GPC等Bank,每个Bank中有若干个引脚,比如GPA0,GPA1, ...,GPC0,GPC1,... 等引脚。

(2) Group

        以功能为依据, 具有相同功能的引脚称为一个Group,比如s3c2440中串口0的TxD、RxD引脚使用 GPH2,GPH3,那这2个引脚可以列为一组,比如s3c2440中串口0的流量控制引脚使用GPH0,GPH1,那这2个引脚也可以列为一组。

(3)State

        设备的某种状态,比如内核自己定义的"default","init","idel","sleep"状态;也可以是其他自己定义的状态,比如串口的"flow_ctrl"状态(使用流量控制)。设备处于某种状态时,它可以使用若干个Group引脚。

3.1.2 设备树中 pinctrl 节点

(1)它定义了各种 pin bank,比如s3c2440有GPA,GPB,GPC,...,GPB各种BANK,每个BANK中有若干引脚:

	pinctrl_0: pinctrl@56000000 {
		reg = <0x56000000 0x1000>;

		gpa: gpa {
			gpio-controller;
			#gpio-cells = <2>;  /* 以后想使用gpa bank中的引脚时, 需要2个u32来指定引脚 */
		};

		gpb: gpb {
			gpio-controller;
			#gpio-cells = <2>;
		};

		gpc: gpc {
			gpio-controller;
			#gpio-cells = <2>;
		};

		gpd: gpd {
			gpio-controller;
			#gpio-cells = <2>;
		};
	};

(2)它还定义了各种group(组合),某种功能所涉及的引脚称为group,比如串口0要用到2个引脚:gph0,gph1:

	uart0_data: uart0-data {
		samsung,pins = "gph-0", "gph-0";
		samsung,pin-function = <2>;   /* 在GPHCON寄存器中gph0,gph1可以设置以下值:
		                                     0 --- 输入功能
		                                     1 --- 输出功能
		                                     2 --- 串口功能
										  我们要使用串口功能,  
										  samsung,pin-function 设置为2
        	                           */
	};

	uart0_sleep: uart0_sleep {
		samsung,pins = "gph-0", "gph-1";
		samsung,pin-function = <0>;   /* 在GPHCON寄存器中gph0,gph1可以设置以下值:
		                                     0 --- 输入功能
		                                     1 --- 输出功能
		                                     2 --- 串口功能
										  我们要使用输入功能,  
										  samsung,pin-function 设置为0
        	                           */
	};
3.1.3 设备节点中要使用某一个 pin group:
	serial@50000000 {
	    ......
		pinctrl-names = "default", "sleep";  /* 既是名字, 也称为state(状态) */
		pinctrl-0 = <&uart0_data>;
		pinctrl-1 = <&uart0_sleep>;
	};
	
	# pinctrl-names中定义了2种state: default 和 sleep,
	# default 对应的引脚是: pinctrl-0, 它指定了使用哪些pin group: uart0_data
	# sleep   对应的引脚是: pinctrl-1, 它指定了使用哪些pin group: uart0_sleep
3.1.4 platform_device,platform_driver匹配时:
really_probe:
	/* If using pinctrl, bind pins now before probing */
	ret = pinctrl_bind_pins(dev);
				dev->pins->default_state = pinctrl_lookup_state(dev->pins->p,
								PINCTRL_STATE_DEFAULT);  /* 获得"default"状态的pinctrl */
				dev->pins->init_state = pinctrl_lookup_state(dev->pins->p,
								PINCTRL_STATE_INIT);    /* 获得"init"状态的pinctrl */

				ret = pinctrl_select_state(dev->pins->p, dev->pins->init_state);    /* 优先设置"init"状态的引脚 */
				ret = pinctrl_select_state(dev->pins->p, dev->pins->default_state); /* 如果没有init状态, 则设置"default"状态的引脚 */
								
	......
	ret = drv->probe(dev);

所以:如果设备节点中指定了pinctrl,在对应的probe函数被调用之前,先"bind pins",即先绑定、设置引脚。

3.1.5 驱动中想选择、设置某个状态的引脚:
   devm_pinctrl_get_select_default(struct device *dev);      // 使用"default"状态的引脚
   pinctrl_get_select(struct device *dev, const char *name); // 根据name选择某种状态的引脚
   
   pinctrl_put(struct pinctrl *p);   // 不再使用, 退出时调用
3.1.6 参考文档
  • 内核 Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt

3.2 图示

(1)Bank

【设备树笔记整理7】实践操作,linux设备树,linux

(2)Group

【设备树笔记整理7】实践操作,linux设备树,linux

 (3)State

【设备树笔记整理7】实践操作,linux设备树,linux

(4)设备结点

【设备树笔记整理7】实践操作,linux设备树,linux

4 使用设备树给LCD指定各种参数

4.1 参考文章

讓TQ2440也用上設備樹(1) - 摩斯电码 - 博客园

4.2 参考代码

https://github.com/pengdonglin137/linux-4.9/blob/tq2440_dt/drivers/video/fbdev/s3c2410fb.c

4.3 实验方法 

(1)替换dts文件

把"jz2440_irq.dts" 放入内核 arch/arm/boot/dts目录

(2)替换驱动文件

把"s3c2410fb.c" 放入内核 drivers/video/fbdev/ 目录,修改内核 drivers/video/fbdev/Makefile:

obj-$(CONFIG_FB_S3C2410)          += lcd_4.3.o

改为:

obj-$(CONFIG_FB_S3C2410)          += s3c2410fb.o

(3)编译驱动、编译dtbs

export  PATH=PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/work/system/gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabi/bin
cp config_ok  .config
make uImage   // 生成 arch/arm/boot/uImage
make dtbs     // 生成 arch/arm/boot/dts/jz2440_irq.dtb

(4)使用上述uImage,dtb启动内核即可看到LCD有企鹅出现

4.4 设备树相关

(1)设备树中的描述

    fb0: fb@4d000000{
        compatible = "jz2440,lcd";
        reg = <0x4D000000 0x60>;
        interrupts = <0 0 16 3>;
        clocks = <&clocks HCLK_LCD>;   /* a. 时钟 */
        clock-names = "lcd";
        pinctrl-names = "default";     /* b. pinctrl */
        pinctrl-0 = <&lcd_pinctrl &lcd_backlight &gpb0_backlight>;
        status = "okay";

		/* c. 根据LCD引脚特性设置lcdcon5, 指定lcd时序参数 */
        lcdcon5 = <0xb09>;
        type = <0x60>;
        width = /bits/ 16 <480>;
        height = /bits/ 16 <272>;
        pixclock = <100000>;       /* 单位: ps, 10^-12 S,  */
        xres = /bits/ 16 <480>;
        yres = /bits/ 16 <272>;
        bpp = /bits/ 16 <16>;
        left_margin = /bits/ 16 <2>;
        right_margin =/bits/ 16  <2>;
        hsync_len = /bits/ 16 <41>;
        upper_margin = /bits/ 16 <2>;
        lower_margin = /bits/ 16 <2>;
        vsync_len = /bits/ 16 <10>;
    };

&pinctrl_0 {
	gpb0_backlight: gpb0_backlight {
		samsung,pins = "gpb-0";
		samsung,pin-function = <1>;
		samsung,pin-val = <1>;
	};
};

4.5 代码中的处理

(1)时钟

info->clk = of_clk_get(dev->of_node, 0);
clk_prepare_enable(info->clk);

(2)pinctrl

代码中无需处理,在platform_device/platform_driver匹配之后就会设置"default"状态对应的pinctrl

(3)根据LCD引脚特性设置lcdcon5,指定lcd时序参数,直接读设备树节点中的各种属性值, 用来设置驱动参数:

	of_property_read_u32(np, "lcdcon5", (u32 *)(&display->lcdcon5));
	of_property_read_u32(np, "type", &display->type);
	of_property_read_u16(np, "width", &display->width);
	of_property_read_u16(np, "height", &display->height);
	of_property_read_u32(np, "pixclock", &display->pixclock);
	of_property_read_u16(np, "xres", &display->xres);
	of_property_read_u16(np, "yres", &display->yres);
	of_property_read_u16(np, "bpp", &display->bpp);
	of_property_read_u16(np, "left_margin", &display->left_margin);
	of_property_read_u16(np, "right_margin", &display->right_margin);
	of_property_read_u16(np, "hsync_len", &display->hsync_len);
	of_property_read_u16(np, "upper_margin", &display->upper_margin);
	of_property_read_u16(np, "lower_margin", &display->lower_margin);
	of_property_read_u16(np, "vsync_len", &display->vsync_len);

4.6 图示 

5 补充笔记

5.1 确定内核的虚拟地址、物理地址的关键信息 

vmlinux虚拟地址的确定,内核源码:

.config :
     CONFIG_PAGE_OFFSET=0xC0000000
     
arch/arm/include/asm/memory.h
    #define PAGE_OFFSET     UL(CONFIG_PAGE_OFFSET)

arch/arm/Makefile
    textofs-y       := 0x00008000
    TEXT_OFFSET := $(textofs-y)

arch/arm/kernel/vmlinux.lds.S:
    . = PAGE_OFFSET + TEXT_OFFSET;   // // 即0xC0000000+0x00008000 = 0xC0008000, vmlinux的虚拟地址为0xC0008000

arch/arm/kernel/head.S
    #define KERNEL_RAM_VADDR       (PAGE_OFFSET + TEXT_OFFSET)  // 即0xC0000000+0x00008000 = 0xC0008000
    
vmlinux物理地址的确定:
内核源码: 
arch/arm/mach-s3c24xx/Makefile.boot :
    zreladdr-y      += 0x30008000   // zImage自解压后得到vmlinux, vmlinux的存放位置
    params_phys-y   := 0x30000100   // tag参数的存放位置, 使用dtb时不再需要tag

arch/arm/boot/Makefile:
    ZRELADDR    := $(zreladdr-y)

arch/arm/boot/Makefile:
    UIMAGE_LOADADDR=$(ZRELADDR)

scripts/Makefile.lib:
    UIMAGE_ENTRYADDR ?= $(UIMAGE_LOADADDR)  

    // 制作uImage的命令, uImage = 64字节的头部 + zImage,  头部信息中含有内核的入口地址(就是vmlinux的物理地址)
    cmd_uimage = $(CONFIG_SHELL) $(MKIMAGE) -A $(UIMAGE_ARCH) -O linux \
                         -C $(UIMAGE_COMPRESSION) $(UIMAGE_OPTS-y) \
                         -T $(UIMAGE_TYPE) \
                         -a $(UIMAGE_LOADADDR) -e $(UIMAGE_ENTRYADDR) \
                         -n $(UIMAGE_NAME) -d $(UIMAGE_IN) $(UIMAGE_OUT)

5.2 参考

00-Linux设备树系列-简介 - 飞翔de刺猬 - CSDN博客.html
https://blog.csdn.net/lhl_blog/article/details/82387486

Linux kernel的中断子系统之(二):IRQ Domain介绍_搜狐科技_搜狐网.html
http://www.sohu.com/a/201793206_467784

基于设备树的TQ2440的中断(1)
https://www.cnblogs.com/pengdonglin137/p/6847685.html

基于设备树的TQ2440的中断(2)
https://www.cnblogs.com/pengdonglin137/p/6848851.html

基於tiny4412的Linux內核移植 --- 实例学习中断背后的知识(1)
http://www.cnblogs.com/pengdonglin137/p/6349209.html

Linux kernel的中断子系统之(一):综述
http://www.wowotech.net/irq_subsystem/interrupt_subsystem_architecture.html

Linux kernel的中断子系统之(二):IRQ Domain介绍

linux kernel的中断子系统之(三):IRQ number和中断描述符

linux kernel的中断子系统之(四):High level irq event handler

Linux kernel中断子系统之(五):驱动申请中断API

Linux kernel的中断子系统之(六):ARM中断处理过程

linux kernel的中断子系统之(七):GIC代码分析文章来源地址https://www.toymoban.com/news/detail-702848.html

到了这里,关于【设备树笔记整理7】实践操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Linux字符设备操作函数

    Linux字符设备操作函数是指对字符设备进行打开、关闭、读取、写入、控制等基本操作的函数,它们通过字符设备结构体中的 file_operations 结构体来定义。常用的字符设备操作函数包括: 1、open : 当一个进程试图打开设备文件时,调用这个函数。开发者可以在这个函数里面做一

    2024年02月16日
    浏览(33)
  • 【字节跳动青训营】后端笔记整理-2 | Go实践记录:猜谜游戏,在线词典,Socks5代理服务器

    **本人是第六届字节跳动青训营(后端组)的成员。本文由博主本人整理自该营的日常学习实践,首发于稀土掘金:🔗Go实践记录:猜谜游戏,在线词典,Socks5代理服务器 | 青训营 我的go开发环境: *本地IDE:GoLand 2023.1.2 *go:1.20.6 猜数字游戏也算是入门一门编程语言必写的程

    2024年02月13日
    浏览(48)
  • GIT常用操作整理(从本地创建仓库到提交到GitHub全流程)学习笔记

    1. 本体和插件下载 官网: GIT Download下载 安装过程中一路默认即可。 终端输入 查看git安装是否成功。 (可选)然后下载一个 Git 状态显示到 powershell 中的非常好用插件,posh-Git(windows): 用管理员身份打开 powershell ,之后输入 重启 powershell 初始化仓库的文件位置会加一个

    2024年04月28日
    浏览(51)
  • Linux 驱动学习笔记 ——(1)字符设备驱动

    《【正点原子】I.MX6U嵌入式Linux驱动开发指南》学习笔记 字符设备是 Linux 驱动中最基本的一类设备驱动,字节设备就是按照字节流来读写的设备,常见的字符设备包括:LED、蜂鸣器、按键、I2C 以及 SPI 等。 Linux 中一切皆文件,字符设备驱动加载成功后会在 /dev 目录下生成相

    2024年02月08日
    浏览(56)
  • LDD学习笔记 -- Linux字符设备驱动

    字符驱动程序用于与Linux内核中的设备进行交互; 字符设备指的是像内存区域这样的硬件组件,通常称为伪设备; 用户空间应用程序通常使用 open read write 等系统调用与这些设备通信; 把用户空间的系统调用连接到设备驱动的系统调用实现方法上。 内核的虚拟文件系统 vir

    2024年02月02日
    浏览(45)
  • Linux驱动开发笔记(四):设备驱动介绍、熟悉杂项设备驱动和ubuntu开发杂项设备Demo

    若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/134533533 红胖子网络科技博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中… 上一篇:《Linux驱动开发笔记(三

    2024年02月05日
    浏览(53)
  • 笔记:linux中LED驱动设备树配置和用法

    设备树中的LED驱动一般是这样写,LED驱动可以控制GPIO的电平变化,生成文件节点很方便 compatible = \\\"gpio-leds\\\"; 对应了驱动中 drivers/leds/leds-gpio.c这个驱动文件 label = \\\"gpio_demo\\\"; 这个名字会在文件系统中生成对应的设备节点 /sys/class/leds/gpio_demo linux,default-trigger = \\\"default-off\\\"; 指的是

    2024年02月10日
    浏览(43)
  • 2023年整理:吉利车机安装安装第三方软件教程,笔记本或手机操作方法!

    💡 文中使用的方法为DNS重定向,需要你具备一定的动手能力,否则将无法达到最终目的。 💡 阅读本文,视为你有一定电脑基础,难以理解时,请寻求百度帮助,百度就是最好的老师! 💡 严正声明:本方法不会对你的任何设备造成破坏,不影响原车任何功能使用,本dns重

    2024年02月08日
    浏览(538)
  • 【Linux操作系统】【综合实验三 用户帐号、文件系统与系统安全管理】【未整理】

    要求掌握Linux系统用户的创建、删除与管理操作;熟悉Linux文件系统的管理模式,学会创建用户文件系统并装载和卸载文件系统;掌握超级用户的管理方式与权限,并实施对普通用户的管理;熟悉Linux系统安全机制与相关管理方法。 通过这个第三阶段实验,要求掌握以下操作与

    2024年02月06日
    浏览(45)
  • Linux设备驱动开发学习笔记(等待队列,锁,字符驱动程序,设备树,i2C...)

    container_of函数可以通过结构体的成员变量检索出整个结构体 函数原型: 内核开发者只实现了循环双链表,因为这个结构能够实现FIFO和LIFO,并且内核开发者要保持最少代码。 为了支持链表,代码中要添加的头文件是linux/list.h。内核中链表实现核心部分的数据结构 是struct li

    2024年01月22日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包