【传输层】网络基础 -- UDP协议 | TCP协议

这篇具有很好参考价值的文章主要介绍了【传输层】网络基础 -- UDP协议 | TCP协议。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

再谈端口号

端口号(Port)标识了一个主机上进行通信的不同的应用程序

【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

在TCP/IP协议中,用 “源IP”, “源端口号”, “目的IP”, “目的端口号”, “协议号” 这样一个五元组来标识一个通信(可以通过netstat -n查看)
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

端口号范围划分

  • 0 - 1023:知名端口号,HTTP,FTP,SSH等这些广为使用的应用层协议,他们的端口号都是固定的
  • 1024 - 65535:操作系统动态分配的端口号。客户端程序的端口号,就是由操作系统从这个范围分配的

有些服务器是非常常用的, 为了使用方便, 人们约定一些常用的服务器, 都是用以下这些固定的端口号:

  • ssh服务器,使用22端口
  • ftp服务器,使用21端口
  • telnet服务器,使用23端口
  • http服务器,使用80端口
  • https服务器,使用443端口

执行下面的命令, 可以看到知名端口号

cat /etc/services

我们自己写一个程序使用端口号时, 要避开这些知名端口号

一个进程是否可以bind多个端口号? 一个端口号是否可以被多个进程bind?
进程与端口号的关系就是父与子的关系,父亲可以有多个儿子,而每个儿子只有一个父亲。进程可以bind多个端口号,一个端口号只能被一个进程bind。

netstat

netstat是一个用来查看网络状态的重要工具
语法:

netstat +[选项]

功能:查看网络状态
常用选项:

  • n 拒绝显示别名,能显示数字的全部转化成数字
  • l 仅列出有在 Listen (监听) 的服務状态
  • p 显示建立相关链接的程序名
  • t (tcp)仅显示tcp相关选项
  • u (udp)仅显示udp相关选项
  • a (all)显示所有选项,默认不显示LISTEN相关

pidof

在查看服务器的进程id时非常方便
语法:

pidof +[进程名] 

功能:通过进程名, 查看进程id

UDP

【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

  • 16位UDP长度,表示整个数据报(UDP首部+UDP数据)的最大长度;
  • 如果校验和出错,就会直接丢弃

UDP的特点

UDP传输的过程类似于寄包裹,你只能一个一个寄,而不能寄1.5个。

  • 无连接:知道对端的IP和端口号就直接进行传输,不需要建立连接;
  • 不可靠:没有确认机制,没有重传机制;如果因为网络故障该段无法发到对方,UDP协议层也不会给应用层返回任何错误信息;
  • 面向数据报:不能够灵活的控制读写数据的次数和数量;

面向数据报

应用层交给UDP多长的报文,UDP原样发送,既不会拆分,也不会合并;

用UDP传输100个字节的数据:
如果发送端调用一次sendto,发送100个字节,那么接收端也必须调用对应的一次recvfrom,接收100个字节;而不能循环调用10次recvfrom,每次接收10个字节;

UDP的缓冲区

  • UDP没有真正意义上的 发送缓冲区,调用sendto会直接交给内核,由内核将数据传给网络层协议进行后续的传输动作;
  • UDP具有接收缓冲区,但是这个接收缓冲区不能保证收到的UDP报的顺序和发送UDP报的顺序一致;如果缓冲区满了,再到达的UDP数据就会被丢弃;

UDP的socket既能读,也能写,这个概念叫做 全双工

我们用的网络lO接口,其实并不直接是发送和接受接口,而是拷贝接口!
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

协议就是结构化数据

UDP使用注意事项:

  • 我们注意到,UDP协议首部中有一个16位的最大长度,也就是说一个UDP能传输的数据最大长度是64K(包含UDP首部)。
  • 然而64K在当今的互联网环境下,是一个非常小的数字。
  • 如果我们需要传输的数据超过64K,就需要在应用层手动的分包,多次发送,并在接收端手动拼装;

基于UDP的应用层协议

  • NFS: 网络文件系统
  • TFTP: 简单文件传输协议
  • DHCP: 动态主机配置协议
  • BOOTP: 启动协议(用于无盘设备启动)
  • DNS: 域名解析协议

当然,也包括你自己写UDP程序时自定义的应用层协议;

TCP

TCP全称为 “传输控制协议(Transmission Control Protocol”). 人如其名, 要对数据的传输进行一个详细的控制;

认识TCP协议的报头

【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

  • 源/目的端口号:表示数据是从哪个进程来,到哪个进程去;
  • 32位序号/32位确认号:下面工作模式会有说明。
  • 4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节);所以TCP头部最大长度是15 * 4 = 60
  • 6位标志位:(下面会详细说明)
    URG:紧急指针是否有效
    ACK:确认号是否有效
    PSH:提示接收端应用程序立刻从TCP缓冲区把数据读走
    RST:对方要求重新建立连接;我们把携带RST标识的称为复位报文段
    SYN:请求建立连接;我们把携带SYN标识的称为同步报文段
    FIN:通知对方,本端要关闭了,我们称携带FIN标识的为结束报文段
  • 16位窗口大小:下面会有
  • 16位校验和:发送端填充,CRC校验,接收端校验不通过,则认为数据有问题。此处的检验和不光包含TCP首部,也包含TCP数据部分。
  • 16位紧急指针:标识哪部分数据是紧急数据;
  • 40字节头部选项:暂时忽略;

【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

  1. tcp协议是有标准长度的:20,先读取20字节

  2. 转换成为一个结构化的数据,立马提取标准报头中的4位首部长度

  3. 就能得到后续报头的剩余大小,x * 4 - 20 = 0; x * 4 - 20 = n;
    tcp报头的总长度,0000-1111,[0,15]
    tcp报文的总长度 = 4位首部长度 * 4字节
    tcp报头的总长度,0000-1111,[0,15],[0,60],[20,60]
    如果我们报头就是20字节,那么4位首部长度,应该填写多少呢?
    x * 4字节 = 20 、x = 5 (0101)

  4. 只要把tcp报头处理读取完毕,剩下的就是有效载荷

理解封装解包

我们收到一个报文,是如何找到曾经bind特定port的进程的?网络协议栈和文件是什么关系?
系统有很多的场景需要我们快速定位一个进程,bind就是将端口号及映射关系插入哈希表中。

【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

理解可靠性

为什么网络传输的时候,会存在不可靠问题?
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip
因为距离变长了,导致出现可靠性问题。

不可靠问题常见都有哪些不可靠的场景?
丢包,乱序,校验错误,重复…

如果距离长了,存不存在绝对的可靠性?

比如:小明小红相隔1千米,小明问小红吃饭了吗?这条消息,小明并不能确定小红是否收到。小红回小明:她吃了。这时候小明才能确定她收到了这条消息。

  • 我们认为,只有收到了应答,历史消息我才能100%确认对方收到,确认应答了,才算可靠
  • 双方通信,一定存在最新的数据,没有应答!—最新消息一般无法保证可靠性!

不存在绝对的可靠性,存在相对的可靠性,一个报文只要收到了应答就能保证该报文的可靠性 – 建立在确认应答

TCP工作模式

【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip
双方两个朝向的可靠性,双方在进行通信的时候,可能除正常的数据段,通信时也会涵盖确认数据段
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

tcp双方的地位是对等的,只需要搞定一个朝向的通信过程

数据到达对面的顺序一定是和发送的顺序一样的吗?不一定
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

注定了应答报文,对应的报头中必定涵盖了确认序号,确认应答和确认序号:接收方已经收到了ACK序号之前的所有(真的所有,且连续)的报文。
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

为什么我们要有两组序号
是因为我们tcp通信是全双工的,收发分别对应序号与确认序号:
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip

16位窗口大小

【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip
因为我们所构建的所有TCP报文都是要给对方发送的,对客户端与服务端一样适用。很明显如果我们知道了对方的缓冲区大小,我们也不需要发送过去了。互相交换接受能力

6位标志位

tcp报文也是有类型的,服务器会收到各种各样的tcp报文,接收方要根据不同的tcp报文,要有不同的动作。tcp正常的数据段,有的就是ack…

URG

URG(紧急)标志位

URG(Urgent)标志位用于指示 TCP 数据包中是否包含紧急数据。它被设置为1时,表示该数据包中的某些数据被标记为紧急数据。紧急数据指示了一种需要尽快处理的情况,通常是一些优先级较高的数据。

当 URG 标志位被设置为1时,还需要使用16位的紧急指针字段(Urgent Pointer)来指示紧急数据在数据流中的位置。紧急指针指示了紧急数据的字节偏移量,从而使接收方能够识别和处理这些紧急数据。

这些紧急数据可以称为带外数据

在 TCP 中,带外数据通过使用紧急指针(Urgent Pointer)和 URG(紧急)标志位来标识和处理。当发送端发送带外数据时,它会设置 URG 标志位,并指定紧急指针的位置,以通知接收端有紧急数据需要处理。接收端在收到带有 URG 标志位的数据时,会根据紧急指针指示的位置来处理这些带外数据。

带外数据的使用可以根据具体的应用协议和实现进行定义。一些常见的应用包括:

  • Telnet 协议:Telnet 协议中使用带外数据来发送终止命令或中断信号,以立即中断当前的操作。
  • FTP 协议:FTP 协议中使用带外数据来传输一些控制信息,例如中断传输或终止文件传输的命令。
  • 窗口大小调整:在 TCP 连接中,带外数据可以用于通知对方调整发送或接收窗口的大小,以便更有效地利用网络带宽。

URG 标志位主要用于紧急数据的通信和处理。当 TCP 连接的一方发送紧急数据时,它可以使用 URG 标志位来通知接收方,以便接收方能够及时处理这些数据。在实际应用中,紧急数据的处理方式和含义可以根据具体的应用协议和实现进行定义。

需要注意的是,URG 标志位的具体使用和处理是由应用层协议和操作系统决定的。因此,不同的应用程序和操作系统可能有不同的处理方式和行为。

ACK

ACK(确认)标志位

ACK(Acknowledgment)标志位用于指示 TCP 数据包中的确认号(Acknowledgment Number)字段是否有效。它被设置为1时,表示 TCP 数据包中的确认号字段包含有效的确认信息。

在 TCP 连接中,数据的传输是通过发送方将数据分割为多个 TCP 数据包并发送,接收方接收到这些数据包后会发送确认信息给发送方。确认信息中包含了接收方期望收到的下一个字节的序号,即确认号。通过设置 ACK 标志位为1,发送方可以知道接收方已经成功接收到了之前发送的数据。
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip
TCP将每个字节的数据都进行了编号:即为序列号,每一个ACK都带有对应的确认序列号, 意思是告诉发送者,我已经收到了哪些数据;下一次你从哪里开始发
【传输层】网络基础 -- UDP协议 | TCP协议,Linux网络基础,网络,udp,tcp/ip
我们把TCP里的发送缓冲区当做数组,只要将数据从应用层拷贝到了发送缓冲区,每个字节就天然有了序列号。

ACK 标志位在 TCP 的三次握手过程中也起到了重要的作用。在建立 TCP 连接时,客户端和服务器之间会互相发送带有 SYN(同步)和 ACK 标志位的数据包,用于确认连接的建立和同步序号的交换。

需要注意的是,ACK 标志位的具体使用和处理是由 TCP 协议和操作系统决定的。在 TCP 连接中,发送方和接收方会根据 ACK 标志位的设置来确认数据的传输情况,并进行相应的处理。

PSH

PSH(Push)标志位

PSH(Push)标志位用于指示 TCP 数据包中的数据应该被立即推送给应用层,而不是等待缓冲区填满或等待计时器超时。当 PSH 标志位被设置为1时,发送方通知接收方应该立即将接收到的数据提交给上层应用进行处理。

通常情况下,TCP 数据报在发送方的缓冲区中进行累积,直到缓冲区填满或者等待一定的时间才会发送出去。这种方式可以提高网络传输的效率,因为可以将多个数据报一起发送。但在某些情况下,需要立即将数据推送给接收方的应用层。

例如,在实时通信或交互式应用中,延迟会对用户体验产生不利影响。通过设置 PSH 标志位为1,发送方可以指示接收方在接收到该数据报后立即将数据提交给应用层处理,从而减少传输延迟。

需要注意的是,PSH 标志位的具体使用和处理是由应用层协议和操作系统决定的。应用程序和操作系统可以根据自身需求来决定何时设置 PSH 标志位,以满足特定的数据传输要求。

RST

RST(复位)标志位

RST(Reset)标志位用于指示 TCP 数据包中的复位请求。当 RST 标志位被设置为1时,它表示发送方或接收方希望立即中断当前的 TCP 连接,并进行连接的复位操作。

RST 标志位通常用于表示发生了严重的错误或异常情况,导致当前的连接无法继续进行。当一方发送带有 RST 标志位的 TCP 数据包时,它相当于向对方发送了一个连接复位请求,要求对方放弃当前的连接并重新建立新的连接。

RST 标志位的使用场景包括:

  • 非法连接或攻击:当网络设备或应用程序检测到非法连接或攻击时,可以发送带有 RST 标志位的数据包,以中断与攻击者的连接并保护系统的安全。
  • 异常情况处理:当发生一些严重的异常情况,如网络故障、连接超时或协议错误等,可以使用 RST 标志位来中断当前的连接并重新建立新的连接。
  • 拒绝服务防护:在面对拒绝服务(DoS)攻击或过载情况下,网络设备或服务可以使用 RST 标志位来拒绝新的连接请求,并释放已建立的连接资源。

需要注意的是,RST 标志位的具体使用和处理是由 TCP 协议和操作系统决定的。在收到带有 RST 标志位的数据包时,接收方会根据协议规定的处理方式来中断连接并进行相应的处理。

SYN

SYN(同步)标志位

SYN(Synchronize)标志位用于在建立 TCP 连接时进行同步和协商。在 TCP 的三次握手过程中,SYN 标志位扮演了重要的角色。

当发送方希望建立一个新的 TCP 连接时,它会发送一个带有 SYN 标志位的数据包给接收方。这个数据包中包含一个初始序列号(Initial Sequence Number),用于标识数据流的起始位置。通过设置 SYN 标志位为1,发送方告诉接收方它希望建立一个新的连接,并将初始序列号设置为指定的值。

接收方收到带有 SYN 标志位的数据包后,会发送一个带有 SYN 和 ACK(确认)标志位的数据包作为回应。这个数据包中包含确认号(Acknowledgment Number)字段,表明接收方期望收到的下一个字节的序号,并且也包含一个自己选择的初始序列号。

最后,发送方收到接收方的 SYN+ACK 数据包后,会发送一个带有 ACK 标志位的数据包作为确认。这个数据包中的确认号字段表示发送方期望接收到的下一个字节的序号。

通过这个三次握手的过程,发送方和接收方可以建立起双向的、可靠的 TCP 连接,并同步序列号和确认号,以确保数据的可靠传输。

需要注意的是,SYN 标志位的具体使用和处理是由 TCP 协议和操作系统决定的。在 TCP 连接的建立过程中,发送方和接收方会根据 SYN 标志位的设置和响应来完成连接的建立和同步操作。

FIN

FIN(结束)标志位

FIN(Finish)标志位用于表示发送方已经完成发送数据,并且要求关闭连接。当一个 TCP 连接的一方发送带有 FIN 标志位的数据包时,它表示它已经没有更多的数据要发送,并且希望关闭连接。

FIN 标志位的使用场景包括:

  • 正常关闭连接:当发送方发送完所有的数据后,它会发送一个带有 FIN 标志位的数据包,告知接收方已经没有更多数据需要发送,并请求关闭连接。
  • 异常关闭连接:在某些情况下,连接的一方可能会遇到异常情况,如应用程序崩溃、网络故障或连接超时等。在这种情况下,该方会发送带有 FIN 标志位的数据包,以请求关闭连接,并指示对方不要再发送数据。

当一方收到带有 FIN 标志位的数据包时,它会发送一个带有 ACK(确认)标志位的数据包作为确认,表示已经收到关闭请求。然后,它也可以选择发送带有 FIN 标志位的数据包,表示它也已经完成发送数据,并请求关闭连接。

通过这种方式,双方可以逐步关闭连接,确保双向的数据都已经发送完毕,并最终关闭连接。

需要注意的是,FIN 标志位的具体使用和处理是由 TCP 协议和操作系统决定的。在 TCP 连接关闭过程中,发送方和接收方会根据 FIN 标志位的设置和响应来完成连接的逐步关闭。


如有错误或者不清楚的地方欢迎私信或者评论指出🚀🚀文章来源地址https://www.toymoban.com/news/detail-702953.html

到了这里,关于【传输层】网络基础 -- UDP协议 | TCP协议的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 网络基础及TCP/UDP 笔记

    应用层:跟人进行交互(将抽象语言加工成编码) 表示层:将编码转化为二进制方便电脑识别 介质访问控制层:用于操作控制物理层 物理层:物理硬件,介质访问控制层的载体 常见的网线 RJ-45双绞线(最长距离100M) 常用中继器解决电信号变弱的问题(易导致数据失真)

    2024年02月21日
    浏览(21)
  • 网络基础2【HTTP、UDP、TCP】

    目录 一.应用层 1.协议 2.网络版计算器 3.HTTP协议 (1)了解url和http (2)http的用处 (3)urlencode和urldecode (4)http协议格式 4.HTTPS协议  (1)加密 (2)为什么要加密 (3)常见的加密方式 (4)数据摘要(数据指纹) (5)加密方案 (6)证书 (7)数字签名(数据签名) (

    2023年04月25日
    浏览(20)
  • 网络传输层协议:UDP和TCP

    端口号(Port)标识了一个主机上进行通信的不同的应用程序; 在TCP/IP协议中, 用 \\\"源IP\\\", \\\"源端口号\\\", \\\"目的IP\\\", \\\"目的端口号\\\", \\\"协议号\\\" 这样一个五元组来标识一个通信(可以通过 netstat -n查看);  0 - 1023: 知名端口号, HTTP, FTP, SSH 比特科技 等这些广为使用的应用层协议, 他们的端口号

    2024年02月15日
    浏览(22)
  • 网络原理(四):传输层协议 TCP/UDP

    目录 应用层 传输层 udp 协议  端口号 报文长度(udp 长度) 校验和 TCP 协议 确认应答 超时重传 链接管理 滑动窗口 流量控制 拥塞控制 延时应答 捎带应答 总结 我们第一章让我们对网络有了一个初步认识,第二章和第三章我们通过代码感受了网络通信程序。 而本章的 通信原

    2023年04月27日
    浏览(30)
  • 网络传输层协议详解(TCP/UDP)

    目录 一、TCP协议 1.1、TCP协议段格式  1.2、TCP原理  确认应答机制 超时重传机制 (安全机制) 连接管理机制(安全机制)  滑动窗口  流量控制(安全机制)  拥塞控制  延迟应答(效率机制) 捎带应答(效率机制)  ​编辑面向字节流(粘包问题)  缓冲区  TCP异常情况  二、UDP协议

    2024年02月06日
    浏览(27)
  • 【Linux】传输层协议:UDP和TCP

    但人不能永远浪漫下去,那会走向自我毁灭的。浪漫都是水字旁,会把人淹死的。人最终还是要进入一个规则体系,所谓,随心所欲不逾矩嘛 1. 在网络通信中,通信的本质实际就是两台主机上的进程在网络环境中进行通信,也就是数据的传输,而我们总说TCP/IP协议栈,这两个

    2024年02月12日
    浏览(20)
  • 网络编程 tcp udp http编程流程 网络基础知识

    OSI分层:应用层 表示层 会话层 传输层 网络层 数据链路层 物理层 tcp/ip: 应用层 传输层 网络层 数据链路 ip地址:唯一标识一台主机 ipv4 32位 ipv6 128位 寻址 可以反映物理上的一个变化 MAC地址:48 固化在计算机中 ip地址又两部分构成:网络号+主机号 端口号:标识一个应用程序

    2024年02月13日
    浏览(37)
  • 计算机网络笔记:TCP协议 和UDP协议(传输层)

    TCP 和 UDP都是传输层协议,他们都属于TCP/IP协议族。 TCP的全称是 传输控制协议 是一种 面向连接的、可靠的、基于字节流 的 传输层 通信协议。TCP 是面向连接的、可靠的流协议(流就是指不间断的数据结构) TCP报文 是TCP层传输的数据单元,也称为 报文段 ,一个TCP报文段由

    2024年02月02日
    浏览(23)
  • 【JavaEE】网络原理——传输层协议:UDP和TCP

    目录 1、简单了解应用层协议 2、传输层UDP协议 3、传输层TCP协议  3.1、TCP报文介绍 3.2、TCP实现可靠传输的核心机制 3.2.1、确认应答 3.2.2、超时重传  3.3、连接管理 (三次挥手,四次握手) 3.3.1、建立连接(三次握手) 3.3.2、断开连接(四次挥手)  3.4、滑动窗口  3.5、流量

    2024年02月10日
    浏览(58)
  • 【网络】传输层——UDP | TCP(协议格式&&确认应答&&超时重传&&连接管理)

    🐱作者:一只大喵咪1201 🐱专栏:《网络》 🔥格言: 你只管努力,剩下的交给时间! 现在是传输层,在应用层中的报文(报头 + 有效载荷)就不能被叫做报文了,而是叫做 数据段 (报头 + 有效载荷),传输层的有效载荷就是应用层的完整报文。 端口号(port):标识了一个主机上

    2024年02月13日
    浏览(19)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包