Pandas数据中的浅拷贝与深拷贝

这篇具有很好参考价值的文章主要介绍了Pandas数据中的浅拷贝与深拷贝。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

pandas库主要有两种数据结构DataFrames和Series。这些数据结构在内部用索引数组和数据数组表示,索引数组标记数据,数据数组包含实际数据。现在,当我们试图复制这些数据结构(DataFrames和Series)时,我们实际上是复制对象的索引和数据,有两种方法可以做到这一点,即浅复制和深复制。
这些操作是在库函数pandas.DataFrame.copy(deep=False)(用于浅拷贝)和pandas.DataFrame.copy(deep=True)(用于DataFrames和Series中的深拷贝)的帮助下完成的。

现在,让我们了解一下什么是浅拷贝。

浅拷贝

当创建DataFrame或Series对象的浅层副本时,它不会复制原始对象的索引和数据,而只是复制对其索引和数据的引用。因此,对一个对象所做的更改将反映在另一个对象中。

它指的是构造一个新的集合对象,然后用对原始集合中的子对象的引用填充它。复制过程不会递归,因此不会创建子对象本身的副本。

比如:
Pandas数据中的浅拷贝与深拷贝,数据科学,python,pandas

import pandas as pd
 
# assign dataframe
df = pd.DataFrame({'index': [1, 2, 3, 4],
                   'GFG': ['Mandy', 'Ron', 'Jacob', 'Bayek']})
 
 
# shallow copy
copydf = df.copy(deep=False)
 
# comparing shallow copied dataframe
# and original dataframe
print('\nBefore Operation:\n', copydf == df)
 
# assignment operation
copydf['index'] = [0, 0, 0, 0]
 
 
# comparing shallow copied dataframe
# and original dataframe
print('\nAfter Operation:\n', copydf == df)
 
print('\nOriginal Dataframe after operation:\n', df)

输出

Pandas数据中的浅拷贝与深拷贝,数据科学,python,pandas

从上面程序的输出可以看出,应用于浅层复制数据帧的更改会自动应用于原始数据帧。

深拷贝

DataFrame或Series对象的深层副本具有自己的索引和数据副本。这是一个复制过程递归发生的过程。这意味着首先构造一个新的集合对象,然后用在原始集合中找到的子对象的副本递归地填充它。在深度复制的情况下,对象的副本被复制到另一个对象中。这意味着对对象副本所做的任何更改都不会反映在原始对象中。

例如
Pandas数据中的浅拷贝与深拷贝,数据科学,python,pandas

import pandas as pd
 
# assign dataframe
df = pd.DataFrame({'index': [1, 2, 3, 4],
                   'GFG': ['Mandy', 'Ron', 'Jacob', 'Bayek']})
 
# deep copy
copydf = df.copy(deep=True)
 
# comparing shallow copied dataframe
# and original dataframe
print('\nBefore Operation:\n', copydf == df)
 
# assignment operation
copydf['index'] = [0, 0, 0, 0]
 
 
# comparing shallow copied dataframe
# and original dataframe
print('\nAfter Operation:\n', copydf == df)
 
print('\nOriginal Dataframe after operation:\n', df)

输出
Pandas数据中的浅拷贝与深拷贝,数据科学,python,pandas
在这里,原始对象中的数据不会被递归复制。也就是说,原始对象的数据中的数据仍然指向相同的存储单元。例如,如果Dataframe或Series对象中的数据包含任何可变数据,那么它将在它和它的深层副本之间共享,并且对其中一个的任何修改都将反映在另一个中。文章来源地址https://www.toymoban.com/news/detail-703239.html

浅拷贝与深拷贝的区别

浅拷贝 深拷贝
它是集合结构的副本,而不是元素的副本。 它是集合的副本,其中复制了原始集合中的所有元素。
影响初始数据帧。 不影响初始数据帧。
浅拷贝不会复制子对象。 深拷贝递归地复制子对象。
创建浅拷贝比创建深拷贝快。 与浅拷贝相比,创建深拷贝速度较慢。
副本依赖于原件。 副本并不完全依赖于原件。

到了这里,关于Pandas数据中的浅拷贝与深拷贝的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据科学中的Python:NumPy和Pandas入门指南【第121篇—NumPy和Pandas】

    数据科学是当今数字时代中的一个重要领域,而Python是数据科学家们最喜爱的编程语言之一。在这篇博客中,我们将介绍Python中两个强大的库——NumPy和Pandas,它们在数据处理和分析中发挥着重要作用。 NumPy是用于科学计算的基础包,提供了高性能的多维数组对象( numpy.nda

    2024年03月15日
    浏览(96)
  • 【Python】数据科学工具(Numpy Pandas np.array() 创建访问数组 向量与矩阵 Series DataFrame)

    1.Numpy numpy是Python中一个非常重要的科学计算库,其最基础的功能就是N维数组对象——ndarray。 1.1 数组的创建 1)np.array() 用 np.array() 函数可以将Python的序列对象(如列表、元组)转换为ndarray数组。 2)arange、linspace、logspace np.arange(start, stop, step) :创建一个一维数组,其中的值

    2024年02月10日
    浏览(48)
  • [开发语言][c++][python]:C++与Python中的赋值、浅拷贝与深拷贝

    写在前面 :Python和C++中的赋值与深浅拷贝,由于其各自语言特性的问题,在概念和实现上稍微有点差异,本文将这C++和Python中的拷贝与赋值放到一起,希望通过对比学习两语言实现上的异同点,加深对概念的理解。 C++中所谓的 浅拷贝 就是由(系统默认的) 拷贝构造函数对

    2024年02月02日
    浏览(57)
  • 《Python数据分析技术栈》第06章使用 Pandas 准备数据 11 pandas中的运算符 Operators in Pandas

    《Python数据分析技术栈》第06章使用 Pandas 准备数据 11 pandas中的运算符 Operators in Pandas Pandas uses the following operators that can be applied to a whole series. While Python would require a loop to iterate through every element in a list or dictionary, Pandas takes advantage of the feature of vectorization implemented in NumPy that

    2024年01月23日
    浏览(50)
  • 【Python】数据分析+数据挖掘——探索Pandas中的数据筛选

    当涉及数据处理和分析时,Pandas是Python编程语言中最强大、灵活且广泛使用的工具之一。Pandas提供了丰富的功能和方法,使得数据的选择、筛选和处理变得简单而高效。在本博客中,我们将重点介绍Pandas中数据筛选的关键知识点,包括条件索引、逻辑操作符、 query() 方法以及

    2024年02月15日
    浏览(58)
  • 用Python的pandas读取excel文件中的数据

    hello呀!各位铁子们大家好呀,今天呢来和大家聊一聊用Python的pandas读取excel文件中的数据。 使用pandas的 read_excel() 方法,可通过文件路径直接读取。注意到,在一个excel文件中有多个sheet,因此,对excel文件的读取实际上是读取指定文件、并同时指定sheet下的数据。可以一次读

    2024年02月02日
    浏览(58)
  • 【Python】数据分析+数据挖掘——探索Pandas中的索引与数据组织

    在数据科学和数据分析领域,Pandas是一个备受喜爱的Python库。它提供了丰富的数据结构和灵活的工具,帮助我们高效地处理和分析数据。其中,索引在Pandas中扮演着关键角色,它是一种强大的数据组织和访问机制,使我们能够更好地理解和操作数据。 本博客将探讨Pandas中与索

    2024年02月15日
    浏览(58)
  • 4.11 Pandas中的DataFrame数据类型API函数参考手册(一) (Python)

    前言 Pandas 是一个专门用于数据处理和分析的 Python 库,它提供了众多强大的数据结构和函数,帮助用户更加轻松、高效地完成数据处理和分析任务。其中,DataFrame 数据类型是 Pandas 中非常重要的一种数据结构,可以方便地对二维表格数据进行操作、处理、统计和可视化等工作

    2024年02月10日
    浏览(47)
  • Python中浅拷贝与深拷贝

    在本文中,将介绍如何在Python 3中复制或“克隆”对象,以及所涉及的一些注意事项。 注:本教程是用Python 3编写的,但是在复制对象时,Python 2和3并没有什么区别。当有不同时,会在文中指出。 让我们首先看看如何复制Python的内置集合。Python内置的集合是可变的,如列表、

    2024年02月02日
    浏览(39)
  • python-浅拷贝(copy)与深拷贝(deepcopy)

    目录 一、前言: 二、深拷贝与浅拷贝的异同:         1.相同点:                2.不同点:         3.形象说明:         注意: 三、浅拷贝:  3.1.1浅拷贝示意图: 3.1.2示意图说明         1.对象与子对象(元素)的关系:         2.对象:         3.元

    2024年02月11日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包