Pytorch——常用损失函数详解

这篇具有很好参考价值的文章主要介绍了Pytorch——常用损失函数详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

损失函数总结

首先直接贴上个人看过比较好的一些的解析:

  • 深度学习之常用损失函数
  • 损失函数loss大总结
    损失函数(Loss Function)
    pytorch中的gather函数_PyTorch中的损失函数–L1Loss /L2Loss/SmoothL1Loss

很全的Pytorch loss函数汇总:

  • pytorch loss function 总结

部分特殊损失函数详解

1. 余弦损失函数 torch.nn.CosineEmbeddingLoss

  • 余弦损失函数,常常用于评估两个向量的相似性,两个向量的余弦值越高,则相似性越高。

余弦损失函数,pytorch,深度学习,python,神经网络

  • x:包括x1x2,即需要计算相似度的predictionGT
  • y:相当于人为给定的flag,决定按哪种方式计算得到loss的结果。

使用说明:

  • 如果需要约束使x1和x2尽可能的相似,那么就使用y=1predictionGT完全一致时,loss为0,反之亦然。

使用示例:文章来源地址https://www.toymoban.com/news/detail-703593.html

input1 = torch.randn(100, 128)
input2 = torch.randn(100, 128)
cos = nn.CosineEmbeddingLoss(reduction='mean')

loss_flag = torch.ones([100]) # 需要初始化一个N维的1或-1
output = cos(input1, input2, loss_flag)
print(output)	# tensor(1.0003)

到了这里,关于Pytorch——常用损失函数详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习所有损失函数】在 NumPy、TensorFlow 和 PyTorch 中实现(2/2)

    在本文中,讨论了深度学习中使用的所有常见损失函数,并在NumPy,PyTorch和TensorFlow中实现了它们。         稀疏分类交叉熵损失类似于分类交叉熵损失,但在真实标签作为整数而不是独热编码提供时使用。它通常用作多类分类问题中的损失函数。 稀疏分类交叉熵损失的公

    2024年02月13日
    浏览(38)
  • 【深度学习所有损失函数】在 NumPy、TensorFlow 和 PyTorch 中实现(1/2)

    在本文中,讨论了深度学习中使用的所有常见损失函数,并在NumPy,PyTorch和TensorFlow中实现了它们。 我们本文所谈的代价函数如下所列:

    2024年02月13日
    浏览(47)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(三):PyTorch常用函数

    返回一维张量(一维数组),官网说明,常见的三种用法如下 tensor.shape:查看张量的形状 tensor.reshape:返回改变形状后的张量,原张量不变

    2024年02月15日
    浏览(50)
  • 深度学习Pytorch常用api详解记录

    对象 :给定的序列化张量,即 Tensor 型。 功能 :实现两个张量在指定维度上的拼接。 输出 :拼接后的张量。 函数以及参数 : torch.cat( tensor , dim ) ,官方给出的有四个参数,但是我们平时只会用到前两个参数即可。 tensor :有相同形状的张量序列,所有的张量需要有相同的

    2024年02月09日
    浏览(44)
  • pytorch学习-线性神经网络——softmax回归+损失函数+图片分类数据集

            Softmax回归(Softmax Regression)是一种常见的多分类模型,可以用于将输入变量映射到多个类别的概率分布中。softmax回归是机器学习中非常重要并且经典的模型,虽然叫回归,实际上是一个分类问题         回归是估计一个连续值,分类是预测一个连续的类别  示例

    2024年02月15日
    浏览(49)
  • 深度学习中常用的损失函数(一) —— MSELoss()

            该函数叫做平均平方误差,简称均方误差。它的英文名是mean squared error,该损失函数是挨个元素计算的。该元素的公式如下:                                  其连个输入参数,第一个参数是输出的参数,第二个参数是与之对比的参数。        loss= torch.nn.MSE

    2024年02月12日
    浏览(52)
  • 【深度学习】损失函数详解

    在机器学习中,损失函数是代价函数的一部分,而代价函数则是目标函数的一种类型。 损失函数(Loss Function): 用于定义单个训练样本与真实值之间的误差; 代价函数(Cost Function): 用于定义单个批次/整个训练集样本与真实值之间的误差; 目标函数(Objective Function): 泛指任意可

    2024年02月02日
    浏览(43)
  • PyTorch内置损失函数汇总 !!

    文章目录 一、损失函数的概念 二、Pytorch内置损失函数 1. nn.CrossEntropyLoss 2. nn.NLLLoss 3. nn.NLLLoss2d 4. nn.BCELoss 5. nn.BCEWithLogitsLoss 6. nn.L1Loss 7. nn.MSELoss 8. nn.SmoothL1Loss 9. nn.PoissonNLLLoss 10. nn.KLDivLoss 11. nn.MarginRankingLoss 12. nn.MultiLabelMarginLoss 13. nn.SoftMarginLoss 14. nn.MultilabelSoftMarginLoss 15. n

    2024年01月25日
    浏览(35)
  • Pytorch损失函数

    基本用法 criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 1 L1范数损失 L1Loss 计算 output 和 target 之差的绝对值。 参数: 2 均方误差损失 MSELoss 计算 output 和 target 之差的均方差。 参数: 3 交叉熵损失 CrossEntropyLoss 当训练有 C 个类别的分类问

    2023年04月25日
    浏览(38)
  • PyTorch损失函数(二)

    nn.L1Loss 是一个用于计算输入和目标之间差异的损失函数,它计算输入和目标之间的绝对值差异。 主要参数: reduction :计算模式,可以是 none 、 sum 或 mean 。 none :逐个元素计算损失,返回一个与输入大小相同的张量。 sum :将所有元素的损失求和,返回一个标量值。 mean :

    2024年01月17日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包