001图机器学习与图神经网络简介

这篇具有很好参考价值的文章主要介绍了001图机器学习与图神经网络简介。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一. 无处不在的图

  • 一切具有关联关系的数据都可以用图来表示。比如:交通网、知识图谱、分子结构、人际关系网、计算机网络架构、基因与蛋白质表征关系等。

二. 如何对图数据做信息挖掘

  • 对于没有关联的、独立同分布的数据,传统机器学习中的CNN、RNN、Transformer算法就可以对数据很好的进行信息挖掘。
  • 图机器学习与图神经网络就是专门处理图数据的方法。
  • 图数据的特点:
  1. 图是动态变化的;
  2. 图的尺寸应该是任意的;
  3. 图的特征一般是多模态的;
  4. 图是没有固定的节点顺序或参考锚点的。

三. 图神经网络

  • 图神经网络可以实现端到端的表示学习:
  1. 输入:图数据;
  2. 输出:新的图、新的子图、节点的类别、节点间的新连接。
  • 所谓的表示学习,可以理解成图神经网络将节点信息映射成一个 d 维的向量。
  • 这个 d 维的向量包含了该节点自身的信息以及它的连接信息。
  • 这个过程也称为图嵌入。

四. 图机器学习常用的编程工具

  1. PyG
  2. GraphGym
  3. NetworkX
  4. DGL

五. 图的可视化工具

  1. AntV可视化
  2. Echarts可视化
  3. graphxr可视化

六. 常见的图数据库

  • Neo4j

七. 图机器学习的应用举例

  • 节点层面:根据已知的节点类别推测未知的节点类别;
  • 连接层面:根据已知的连接推测未知的连接(推荐系统、药物联合副作用);
  • 子图层面:聚类、社群检测、导航系统;
  • 整图层面:图分类、图生成(生成一种新的分子并预测其理化性质、物理模型模拟、预测蛋白质的空间结构)。

八. 结束语

  • 在工业、医疗、商业等生活中的方方面面,图的应用都正在并要一直大放异彩。
  • 掌握了处理图的能力,就是掌握了窥探这个世界的不二法门。

文章来源地址https://www.toymoban.com/news/detail-703783.html

到了这里,关于001图机器学习与图神经网络简介的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包