数学建模:模糊综合评价分析

这篇具有很好参考价值的文章主要介绍了数学建模:模糊综合评价分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:模糊综合评价分析

综合评价分析

构成综合评价类问题的五个要素:

  1. 被评价对象
  2. 评价指标
  3. 权重系数
  4. 综合评价模型
  5. 评价者

综合评价的一般步骤:

  1. 确定综合评价的目的(分类?排序?实现程度)
  2. 建立评价指标体系
  3. 对指标数据进行预处理:一致化和无量纲化处理
  4. 确定各个指标的权重
  5. 求综合评价值

常用评价方法

数学建模:模糊综合评价分析,数学建模,MATLAB,数学建模

数学建模:模糊综合评价分析,数学建模,MATLAB,数学建模

数学建模:模糊综合评价分析,数学建模,MATLAB,数学建模


一级模糊综合评价

  1. 评价对象为 X X X ,其具有评价指标集: U = { u 1 , u 2 , . . . u m } U = \left \{u_1,u_2,...u_m \right \} U={u1,u2,...um}, 具有评价等级集:V = { v 1 , v 2 , . . . v n } \left \{v_1,v_2 , ... v_n \right\} {v1,v2,...vn}
    1. m m m 表示指标(因素) n n n 表示评语的总个数。
  2. 对 U 中每一指标根据评判集中的等级指标进行模糊评判,得到相对偏差模糊矩阵 R R R , 其中 i , j i,j i,j 表示第 i i i 个指标处于 j j j 评语的隶属度是 R i j R_{ij} Rij

R = [ r 11 , r 12 , ⋯   , r 1 n r 21 , r 22 , ⋯   , r 2 n r m 1 , r m 2 , ⋯   , r m n ] R=\begin{bmatrix}r_{11},r_{12},\cdots,r_{1n}\\r_{21},r_{22},\cdots,r_{2n}\\r_{m1},r_{m2},\cdots,r_{mn}\end{bmatrix} R= r11,r12,,r1nr21,r22,,r2nrm1,rm2,,rmn

  1. 自此 { U , V , R } \left \{ U,V,R \right \} {U,V,R} 构成一个模糊综合评价模型,然后确定各指标的权系数向量,记为 : A A A

A = { a 1 , a 2 , ⋯   , a n } A=\{a_{1},a_{2},\cdots,a_{n}\} A={a1,a2,,an}

  1. 利用矩阵的模糊乘法得到综合模糊评价结果,合成评价结果 B B B

运算为模糊乘法,逻辑乘∧(取最小)和逻辑加∨(取最大)

B = A ⋅ R B = A\cdot R B=AR

  1. 归一化(标准化)后,得到:

B = { b 1 , b 2 , ⋯   , b m } B=\{b_{1},b_{2},\cdots,b_{m}\} B={b1,b2,,bm}

  1. 因此便可以根据 B B B 来判断评价结果。

如何得到相对偏差模糊矩阵 R R R

  1. 相对偏差评价法:

    1. 虚拟化理想方案 u u u

      u = ( u 1 , u 2 , ⋯   , u n ) u i = { max ⁡ j { a i j } , a i j 为效益型指标 min ⁡ j { a i j } , a i j 为成本型指标 u{=}(u_1,u_2,\cdots,u_n)\\\\{u_i=\begin{cases}\max_j\left\{a_{ij}\right\},&a_{ij}\text{为效益型指标}\\\min_j\left\{a_{ij}\right\},&a_{ij}\text{为成本型指标}&\end{cases}} u=(u1,u2,,un)ui={maxj{aij},minj{aij},aij为效益型指标aij为成本型指标

    2. 建立相对偏差模糊矩阵 R R R

      R = ( r 11 r 12 ⋯ r 1 n r 21 r 22 ⋯ r 2 n ⋮ ⋮ ⋱ ⋮ r m 1 r m 2 ⋯ r m n ) r i j = ∣ a i j − u i ∣ max ⁡ j { a i j } − min ⁡ j { a i j } \begin{gathered}\text{R} =\left(\begin{array}{cccc}r_{11}&r_{12}&\cdots&r_{1n}\\r_{21}&r_{22}&\cdots&r_{2n}\\\vdots&\vdots&\ddots&\vdots\\\\r_{m1}&r_{m2}&\cdots&r_{mn}\end{array}\right) \\\\\boldsymbol{r_{ij}} =\frac{\left|a_{ij}-u_i\right|}{\max_j\left\{a_{ij}\right\}-\min_j\left\{a_{ij}\right\}} \end{gathered} R= r11r21rm1r12r22rm2r1nr2nrmn rij=maxj{aij}minj{aij}aijui

  2. 相对优属度评价法:

    1. 使用如下公式来计算相对偏差模糊矩阵 R R R

      r i j = { a i j / max ⁡ j { a i j } , a i j 为效益型 min ⁡ j { a i j } / a i j , a i j 为成本型 min ⁡ j ∣ a i j − α j ∣ / a i j − α j ∣ , a i j 为固定型 \begin{aligned}r_{ij}&=\begin{cases}a_{ij}\Big/\max_j\left\{a_{ij}\right\},a_{ij}\text{为效益型}\\\min_j\left\{a_{ij}\right\}\Big/a_{ij},a_{ij}\text{为成本型}\\\min_j\left|a_{ij}-\alpha_j\right|\Big/a_{ij}-\alpha_j\Big|,a_{ij}\text{为固定型}&\end{cases}\end{aligned} rij= aij/maxj{aij},aij为效益型minj{aij}/aij,aij为成本型minjaijαj/aijαj ,aij为固定型


如何得到指标权系数向量 A A A

变异系数法。

数学建模:变异系数法 | HugeYlh

  1. 得到第 i i i 项指标的均值与方差

x i ‾ = 1 n ∑ j = 1 n a i j , s i 2 = 1 n − 1 ∑ j = 1 n ( a i j − x i ‾ ) 2 ν i = s i / ∣ x i ‾ ∣ \overline{x_i}=\frac1n\sum_{j=1}^na_{ij},s_i^2=\frac1{n-1}\sum_{j=1}^n\left(a_{ij}-\overline{x_i}\right)^2 \\\\\boldsymbol{\nu_{i}}=\boldsymbol{s_{i}}/\left|\overline{\boldsymbol{x_{i}}}\right|\boldsymbol{} xi=n1j=1naij,si2=n11j=1n(aijxi)2νi=si/xi

  1. 得到权重值 a i a_i ai

a i = ν i / ∑ ν i a_i=\nu_i/\sum\nu_i ai=νi/νi


熵权法

数学建模:熵权法 | HugeYlh

  1. 计算每一个指标所占全部指标的比例,得到变异值矩阵

p i j = Y y ¨ ∑ i = 1 m Y i j , i = 1 , ⋯   , m , j = 1 , ⋯   , n p_{ij}=\frac{Y_{\ddot{y}}}{\sum_{i=1}^mY_{ij}},i=1,\cdots,m,j=1,\cdots,n pij=i=1mYijYy¨,i=1,,m,j=1,,n

  1. 计算信息熵

    E j = − ln ⁡ ( m ) − 1 ∑ i = 1 m p i j ln ⁡ p i j E_j=-\ln(m)^{-1}\sum_{i=1}^mp_{ij}\ln p_{ij} Ej=ln(m)1i=1mpijlnpij

  2. 获取各个指标的权重


综合代码

  1. 使用相对偏差评价法求得模糊矩阵 R R R
clc;clear;
% 5行 7列 表示5个评价对象,6项指标
X=[1000	120	5000	1	50	1.5	1
700	60	4000	2	40	2	2
900	60	7000	1	70	1	4
800	70	8000	1.5	40	0.5	6
800	80	4000	2	30	2	5];
% 其中第一列与最后一列指标为效益性(越大越好),其他指标为成本型(越小越好)
[m,n]=size(X);

%% 计算相对偏差模糊矩阵R
maxA=max(X); 
minA=min(X);
G=maxA-min(X);%最大值减去最小值
A1=max(X(:,1));%A1为效益型
A2=min(X(:,2:n-1));%A2~A6为成本型
A3=max(X(:,7));%A7为效益型
u=[A1,A2,A3]; %得到u然后带入到求 每个r_{ij} 的公式
%% 
R = X;
R = (abs(X-repmat(u,m,1)))./G;

%% 利用变异系数计算权向量A
x=mean(X);
s=std(X);
v=s./x;
vsum=sum(v);
A = v./vsum;

%% B为m个评价结果
B=R*(A');
  1. 使用相对优属度来求得模糊矩阵 R R R

R i j = a i j m a x j ( a i j ) R_{ij} = \frac {a_{ij}}{max_{j}(a_{ij})} Rij=maxj(aij)aij

%%
clc;clear;close all;
A=[58 38 14 8 57 10
50 45 11 9 52 12
42 47 8 12 50 15
45 42 12 15 46 16
47 44 13 10 49 13];
[m,n]=size(A);
h=max(A);%最大值
H=repmat(h,m,1);
Mij=A./H;% 得到模糊关系矩阵Mij 相对优属度 

%% 熵权法
% 得到变异值矩阵
Qij = Mij./repmat(sum(Mij),m,1);

% 计算各指标的信息熵
for j=1:n
   % 计算每个指标的信息熵
   fj(j)=-1/log(m)*sum(Qij(:,j).*log(Qij(:,j)));
end

% 计算各指标权重
v=(1-fj)./sum((1-fj));

B=Qij*v';%最终评价结果
disp(B)%显示结果

多级模糊综合评价

评价模型:

C = A B = A ( A 1 R 1 A 2 R 2 ⋯ A n R n ) = A ( B 1 B 2 ⋯ B n ) C=A\text{B}=A\left(\begin{array}{c}A_1R_1\\A_2R_2\\\cdots\\A_nR_n\end{array}\right)=A\left(\begin{array}{c}B_1\\B_2\\\cdots\\B_n\end{array}\right) C=AB=A A1R1A2R2AnRn =A B1B2Bn

即计算出各个二级指标的模糊综合评价的归一化后的评价结果 B B B 后,然后分别进行一级指标的模糊综合评价,并且得到结果: C C C


总结

  1. 灰色关联分析法、相对偏差法和相对优属度法对同一问题的评价、排序结果不尽相同.
  2. 当各指标在评价体系重要性相当时,用变异系数法确定指标权重,可提高上述方法排序的分辨率;
  3. 当各指标在评价体系重要性差异较大时,可考虑用层次分析法确定指标权重;
  4. 在实际中, 对于评价类问题,应同时应用上述几种方法进行综合评价,以提高评价的可靠性。

31 老哥带你学数模:模糊综合评价算法.pdf文章来源地址https://www.toymoban.com/news/detail-704117.html

到了这里,关于数学建模:模糊综合评价分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模—评价模型—灰色关联度分析Vs灰色综合评价

            黑色系统:只明确系统和环境的关系,内部未知         白色系统:内部结构、元素、组成、实现机理已知         灰色系统:部分明确系统与环境见关系、系统结构、实现过程。 灰色系统实例:(1)社会经济系统(企业收入、相关因素) 灰色系统理论

    2024年02月04日
    浏览(52)
  • 数学建模学习(3):综合评价类问题整体解析及分析步骤

    对物体进行评价,用具体的分值评价它们的优劣 选这两人其中之一当男朋友,你会选谁? 不同维度的权重会产生不同的结果 所以找到 每个维度的权重是最核心的问题 0.25 供应商 ID 可靠性 指标 2 指标 3 指标 4 指标 5 1 1 4 100 56 1000 2 2 6 105 55 2000 正向指标处理:即越大越好的指标

    2024年02月16日
    浏览(52)
  • 【数学建模学习】matlab实现评价模型——层次分析法(AHP)

    目录 1概述  2算法实现流程 3实例  4matlab实现层次分析法 5计算结果 层次分析法,简称AHP,是评价模型中的一种算法,指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。层次分析法的缺陷在于判断矩阵是主观决定的,

    2024年02月04日
    浏览(56)
  • 数学建模--综合评价方法

    提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 评价方法大体上可分为两类,其主要区别在确定权重的方法上。一类是主观赋权

    2024年02月10日
    浏览(45)
  • 数学建模笔记(七):综合评价模型

    代表性,也就是这一指标的区分度,最具代表性就是对观测记录最具区分度 强调通行能力前后的变化 (一)指标一致化处理 (二)指标无量纲化处理 (三)定性指标量化 主观评价要量化,无法避免主观因素 f ( 3 ) f(3) f ( 3 ) 使用了两次,其实有四个式子,才解出了四个量

    2024年02月05日
    浏览(62)
  • 数学建模综合评价模型与决策方法

    评价方法主要分为两类,其主要区别在确定权重的方法上 一类是主观赋权法,多次采取综合资讯评分确定权重,如综合指数法,模糊综合评判法,层次评判法,功效系数法等 另一类是客观赋权法,根据各指标间的相关关系或各指标变异程度来确定权数,如主成分分析法,因

    2024年04月23日
    浏览(44)
  • 数学建模之秩和比综合评价方法(RSR)

    本文参考的是司守奎,孙兆亮主编的数学建模算法与应用(第二版) 秩和比综合评价方法(RSR)在医疗卫生领域的多指标综合评价、统计预测预报、统计质量控制等方面已经得到了广泛应用。 其中秩序和比是行或者列秩次的平均值,是一个非参数的统计量,具有0-1连续变量

    2024年02月04日
    浏览(58)
  • 数学建模学习(4):TOPSIS 综合评价模型及编程实战

            需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据: 清空代码和变量的指令 层次分析法 每一行代表一个对象的指标评分 A为自己构造的输入判别矩阵 求特征值特征向量,找到最大特征值对应的特征向量  找到最大的特征值  找到最大

    2024年02月16日
    浏览(54)
  • (数学建模)评价类-主成分分析

    目录 一、模式是干什么的 1.1基本原理 1.2假设(假设检验用SPSS,后面介绍) 1.3计算步骤 二、算法是干啥的,算法和模型怎么对应 2.1程序清单 1.2部分代码的作用 1.3关键程序解释  三、SPSS  (matlab代码用来进行主成分评价,spss用来判断主成分的前提二是否满足) 1、通过正交

    2024年02月07日
    浏览(43)
  • 数学建模评价类方法01——灵敏度分析

    在数学建模的评价类问题中,灵敏度分析是一个重量级的评价方法,尤其是针对规划问题,是一定要在建模后对模型进行灵敏度分析的,用来检验模型的稳定性。 本文主要介绍了灵敏度分析的概念和如何对我们建立的模型进行灵敏度分析,最后,我们通过一个例题来具体讲解

    2023年04月09日
    浏览(113)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包