博弈论小课堂:零和博弈(找到双方的平衡点)

这篇具有很好参考价值的文章主要介绍了博弈论小课堂:零和博弈(找到双方的平衡点)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

从概率论延伸出来的课题——博弈论,博弈论中最典型的两大类博弈,是“零和博弈”与“非零和博弈”。博弈论所研究的最优化问题有多方参与,因此最优化的策略要考虑对方的行为。

博弈论通常被认为是冯·诺依曼发明的,博弈论从本质上讲,是一套解决最优化问题的方法,是研究在竞争中采用什么样的好策略论。

冯·诺依曼的学生纳什解决了非零和博弈的分析,并因此获得了诺贝尔经济学奖。

I 零和博弈

零和博弈是博弈过程中,一方获利就意味着另一方损失。

在选择策略时,不要老考虑对自己有利的情况,而低估对手可能的策略,要多考文章来源地址https://www.toymoban.com/news/detail-704175.html

到了这里,关于博弈论小课堂:零和博弈(找到双方的平衡点)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 汤姆·齐格弗里德《纳什均衡与博弈论》笔记(7)博弈论与概率论

    第十一章 帕斯卡的赌注——博弈、概率、信息与无知 在与费马就这个问题的通信过程中,帕斯卡创造出了概率论。另外,帕斯卡在进行严谨的宗教反思中,得出了 概率 这个概念,它在此几百年后,成为一个关键的、对博弈论的提出有重要意义的数学概念。 帕斯卡观察到,

    2024年01月25日
    浏览(50)
  • 博弈论-策略式博弈矩阵、扩展式博弈树 习题 [HBU]

    目录 前言: 题目与求解 11.请将“田忌赛马”的博弈过程用策略式(博弈矩阵)和扩展式(博弈树)分别进行表示,并用文字分别详细表述。 34.两个朋友在一起划拳喝酒,每个人有4个纯策略:杠子、老虎、鸡和虫子。 输赢规则是:杠子降老虎,老虎降鸡,鸡降虫子,虫子降

    2024年02月03日
    浏览(48)
  • 【博弈论笔记】第二章 完全信息静态博弈

    此部分博弈论笔记参考自经济博弈论(第四版)/谢识予和老师的PPT,是在平时学习中以及期末备考中整理的,主要注重对本章节知识点的梳理以及重点知识的理解,细节和逻辑部分还不是很完善,可能不太适合初学者阅读(看书应该会理解的更明白O(∩_∩)O哈哈~)。现更新到

    2024年02月10日
    浏览(50)
  • Nim游戏博弈论

    https://www.luogu.com.cn/problem/P2197 甲,乙两个人玩 nim 取石子游戏。 nim 游戏的规则是这样的:地上有 n n n 堆石子(每堆石子数量小于 1 0 4 10^4 1 0 4 ),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取。每次只能从一堆里取。最后没石子可取的人就输了

    2024年02月15日
    浏览(45)
  • 博弈论入门

    古诺双寡头模型的条件 市场中有且仅有两家公司 策略为同质商品的量, q i q_i q i ​ 边际成本为c,生产成本就为c*q,在这里我们的边际成本是常数。 需求曲线: P = a − b ∗ ( q 1 + q 2 ) P=a-b*(q_1+q_2) P = a − b ∗ ( q 1 ​ + q 2 ​ ) 利润: U 1 ( q 1 , q 2 ) = P ∗ q 1 − c ∗ q 1 , U 2 (

    2024年02月02日
    浏览(43)
  • 博弈论算法常见模型整理

    本文主要介绍算法竞赛中常常出现的博弈论模型,包括: 4个经典组合游戏 SG函数 SG游戏及拓展 进一步学习需要了解一些前置概念 ICG 博弈图 P点、N点 mex函数 1.ICG ICG全称为“公平组合游戏”,我们下面讨论的博弈游戏均建立在ICG的基础上,那么什么是ICG呢,它需要满足以下条

    2023年04月26日
    浏览(43)
  • 台阶型Nim游戏博弈论

    https://www.acwing.com/problem/content/894/ 现在,有一个 n n n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i i i 级台阶上有 a i a_i a i ​ 个石子( i ≥ 1 i ge 1 i ≥ 1 )。 两位玩家轮流操作,每次操作可以从任意一级台阶上拿若干个石子放到下一级台阶中(不能不拿)。 已经拿到

    2024年02月14日
    浏览(42)
  • 基于博弈论的频谱分配(MATLAB实现)

    代码: 结果:

    2024年01月19日
    浏览(40)
  • I - Bob vs ATM(博弈论)

    传送门:nefu_10-18 - Virtual Judge (vjudge.net) nim游戏的变形。 (())相当于在一堆n个石子中取任意个,sg(n)=n; ((()))(())(),相当于可以在3堆石子分别为3,2,1个石子中取任意个sg函数值为: sg(3)^sg(2)^sg(1); 对于(()()(())),这样的,刨除外面一层,sg函数为sg(1)^sg(1)s

    2024年02月07日
    浏览(34)
  • leetcode292. Nim 游戏(博弈论 - java)

    难度 - 简单 原题链接 - Nim游戏 你和你的朋友,两个人一起玩 Nim 游戏: 桌子上有一堆石头。 你们轮流进行自己的回合, 你作为先手 。 每一回合,轮到的人拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。 假设你们每一步都是最优解。请编写一个函数,来判断你是否

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包