深入理解联邦学习——联邦学习的分类

这篇具有很好参考价值的文章主要介绍了深入理解联邦学习——联邦学习的分类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《深入理解联邦学习》总目录


在实际中,孤岛数据具有不同分布特点,根据这些特点,我们可以提出相对应的联邦学习方案。下面,我们将以孤岛数据的分布特点为依据对联邦学习进行分类。

考虑有多个数据拥有方,每个数据拥有方各自所持有的数据集 D i D_i Di可以用一个矩阵来表示。矩阵的每一行代表一个用户,每一列代表一种用户特征。同时,某些数据集可能还包含标签数据。如果要对用户行为建立预测模型,就必须要有标签数据。我们可以把用户特征叫做 X X X,把标签特征叫做 Y Y Y。比如,在金融领域,用户的信用是需要被预测的标签 Y Y Y;在营销领域,标签是用户的购买愿望 Y Y Y;在教育领域,则是学生掌握知识的程度等。用户特征 X X X加标签 Y Y Y构成了完整的训练数据 ( X , Y ) (X, Y) (X,Y)。但是,在现实中,往往会遇到这样的情况:各个数据集的用户不完全相同,或用户特征不完全相同。具体而言,以包含两个数据拥有方的联邦学习为例,数据分布可以分为以下三种情况:

  • 两个数据集的用户特征 ( X 1 , X 2 , ⋯   ) (X_1, X_2, \cdots) (X1,X2,)重叠部分较大,而用户 ( U 1 , U 2 , ⋯   ) (U_1, U_2, \cdots) (U1,U2,)重叠部分较小
  • 两个数据集的用户 ( U 1 , U 2 , ⋯   ) (U_1, U_2, \cdots) (U1,U2,)重叠部分较大,而用户特征 ( X 1 , X 2 , ⋯   ) (X_1, X_2, \cdots) (X1,X2,)重叠部分较小
  • 两个数据集的用户 ( U 1 , U 2 , ⋯   ) (U_1, U_2, \cdots) (U1,U2,)与用户特征重叠 ( X 1 , X 2 , ⋯   ) (X_1, X_2, \cdots) (X1,X2,)部分都比较小。

为了应对以上三种数据分布情况,我们把联邦学习分为横向联邦学习、纵向联邦学习与联邦迁移学习,如下图所示:
深入理解联邦学习——联邦学习的分类,深入理解联邦学习,人工智能,联邦学习,隐私,机器学习,深度学习

横向联邦学习

在两个数据集的用户特征重叠较多而用户重叠较少的情况下,我们把数据集按照横向(即用户维度)切分,并取出双方用户特征相同而用户不完全相同的那部分数据进行训练,这种方法叫做横向联邦学习。比如有两家不同地区银行,它们的用户群体分别来自各自所在的地区,相互的交集很小。但是,它们的业务很相似,因此,记录的用户特征是相同的。此时,就可以使用横向联邦学习来构建联合模型。GoogIe在2017年提出了一个针对安卓手机模型更新的数据联合建模方案:在单个用户使用安卓手机时,不断在本地更新模型参数并将参数上传到安卓云上,从而使特征维度相同的各数据拥有方建立联合模型的一种联邦学习方案。

横向联邦学习步骤如下:

  1. 参与方各自从服务器下载最新模型
  2. 每个参与方利用本地数据训练模型,加密梯度上传给服务器,服务器聚合各参与方的梯度更新模型参数
  3. 服务器返回更新后的模型给各参与方
  4. 各参与方更新各自模型
  5. 重复步骤1~4至模型收敛或达到预期

在传统的机器学习建模中,通常是把模型训练需要的数据集合到一个数据中心然后训练模型再进行预测。在横向联邦学习中,可以看作是基于样本的分布式模型训练,分发全部数据到不同的机器,每台机器从服务器下载模型,然后利用本地数据训练模型,之后返回给服务器需要更新的参数。服务器聚合各机器上的返回的参数,更新模型,再把最新的模型反馈到每台机器。在这个过程中,每台机器下都是相同且完整的模型,且机器之间不交流不依赖,在预测时每台机器也可以独立预测,可以把这个过程看作成基于样本的分布式模型训练。谷歌最初就是采用横向联邦的方式解决安卓手机终端用户在本地更新模型的问题的。

纵向联邦学习

在两个数据集的用户重叠较多而用户特征重叠较少的情况下,我们把数据集按照纵向(即特征维度)切分,并取出双方用户相同而用户特征不完全相同的那部分数据进行训练,这种方法叫做纵向联邦学习。比如有两个不同机构,一家是某地的银行,另一家是同一个地方的电商。它们的用户群体很有可能包含该地的大部分居民,因此用户的交集较大。但是,由于银行记录的都是用户的收支行为与信用评级,而电商则保有用户的浏览与购买历史,因此它们的用户特征交集较小。纵向联邦学习就是将这些不同特征在加密的状态下加以聚合,以增强模型能力的联邦学习。目前,逻辑回归模型,树型结构模型和神经网络模型等众多机器学习模型已经逐渐被证实能够建立在这个联邦体系上。

联邦迁移学习

在两个数据集的用户与用户特征重叠都较少的情况下,我们不对数据进行切分,而可以利用迁移学习来克服数据或标签不足的情况,这种方法叫作联邦迁移学习。比如有两个不同机构,一家是位于中国的银行,另一家是位于美国的电商。由于受到地域限制,这两家机构的用户群体交集很小。同时,由于枳构类型的不同,二者的数据特征也只有小部分重合。在这种情况下,要想进行有效的联邦学习,就必须引入迁移学习,来解决单边数据规模小和标签样本少的问题,从而提升模型的效果。

参考文献:
[1] 杨强, 刘洋, 程勇, 康焱, 陈天健, 于涵. 联邦学习[M]. 电子工业出版社, 2020
[2] 微众银行, FedAI. 联邦学习白皮书V2.0. 腾讯研究院等, 2021文章来源地址https://www.toymoban.com/news/detail-704284.html

到了这里,关于深入理解联邦学习——联邦学习的分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(91)
  • 【人工智能】监督学习、分类问题、决策树、信息增益

    什么是决策树 —— 基本概念 非叶节点:一个属性上的测试,每个分枝代表该测试的输出 叶节点:存放一个类标记 规则:从根节点到叶节点的一条属性取值路径 模型训练:从已有数据中生成一棵决策树 分裂数据的特征,寻找决策类别的路径 相同的数据,根据不同的特征顺

    2024年02月16日
    浏览(58)
  • 毕业设计:基于深度学习的图像分类识别系统 人工智能

    目录 前言 项目背景 数据集 设计思路 自注意力 网络模型 实验环境 实验结果分析 更多帮助     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课

    2024年04月16日
    浏览(102)
  • 深入理解联邦学习——纵向联邦学习

    分类目录:《深入理解联邦学习》总目录 假设进行联邦学习的数据提供方为 A A A 和 B B B ,第三方为 C C C ,则纵向联邦学习步骤如下: 在系统级做加密样本对齐,在企业感知层面不会暴露非交叉用户 对齐样本进行模型加密训练: 由第三方 C C C 向 A A A 和 B B B 发送公钥,用来

    2024年02月09日
    浏览(45)
  • 89 | Python人工智能篇 —— 深度学习算法 Keras 实现 MNIST分类

    本教程将带您深入探索Keras,一个开源的深度学习框架,用于构建人工神经网络模型。我们将一步步引导您掌握Keras的核心概念和基本用法,学习如何构建和训练深度学习模型,以及如何将其应用于实际问题中。

    2024年02月13日
    浏览(59)
  • 人工智能学习与实训笔记(二):神经网络之图像分类问题

    人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 目录 二、图像分类问题 2.1 尝试使用全连接神经网络 2.2 引入卷积神经网络  2.3 分类函数Softmax 2.4 交叉熵损失函数 2.5 学习率优化算法 2.6 图像预处理算法 2.6.1 随机改变亮暗、对比度和颜色等 2.6.2 随机填充 2.6.

    2024年02月20日
    浏览(49)
  • 计算机竞赛 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

    🔥 优质竞赛项目系列,今天要分享的是 基于人工智能的图像分类技术 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失

    2024年02月11日
    浏览(66)
  • (六)人工智能应用--深度学习原理与实战--理解张量与运算图

    Tensorflow名称中的Tensor即张量,不仅仅是Tensorflow,几乎所有的深度学习平台都以张量为基本的数据结构。简单来说,张量就是多维数组,本质上是一种数据容器,它可以有任意维度,比如矩阵就是二维张量(二维数组)。 深度学习中使用张量来表示数据,计算图是由张量和张量

    2024年02月15日
    浏览(51)
  • 人工智能的分类:机器学习/专家系统/推荐系统/知识图谱/强化学习/迁移学习/特征工程/模式识别

    机器学习 机器学习算法工程师:技术路线、方向选择、职业规划、最新技术(从小白到大魔王全攻略)_会害羞的杨卓越的博客-CSDN博客 专家系统 知识图谱 知识图谱:实体-关系-实体/知识建模/知识获取/知识融合/知识存储/知识应用_会害羞的杨卓越的博客-CSDN博客 特征工程

    2024年02月16日
    浏览(58)
  • 互联网加竞赛 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

    🔥 优质竞赛项目系列,今天要分享的是 基于人工智能的图像分类技术 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失

    2024年02月02日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包