deepspeed存在一个bug,即在训练时不保存调度器状态,因此如果训练中断后再重新开始训练,调度器还是会从头开始而不是接着上一个checkpoint的调度器状态来训练。这个bug在deepspeed的github中也有其他人提出:https://github.com/microsoft/DeepSpeed/issues/3875
因此我们需要写一个保存调度器状态的代码,才可以解决这个问题。
具体方法是加一个callback类,专门负责保存调度器的状态以及在训练重新开始时加载调度器的状态:
先在训练文件中给trainer加一个callback文章来源:https://www.toymoban.com/news/detail-704636.html
from smoe.callbacks.save_model import SchedulerStateCallback
trainer.add_callback(SchedulerStateCallback)
class SchedulerStateCallback(TrainerCallback):
def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
if os.environ.get("RANK", "0") == "0":
#scheduler = kwargs['lr_scheduler']
scheduler = kwargs.get("lr_scheduler")
if scheduler is None:
return
scheduler_state = scheduler.state_dict()
#save_path = os.path.join(args.output_dir, SCHEDULER_NAME)
# 使用 PREFIX_CHECKPOINT_DIR 和 global_step 创建检查点目录名
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}"
# 完整的检查点目录路径
checkpoint_path = os.path.join(args.output_dir, checkpoint_folder)
# 如果目录不存在,则创建它
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
# 完整的保存路径
save_path = os.path.join(checkpoint_path, SCHEDULER_NAME)
# 保存scheduler状态
torch.save(scheduler_state, save_path)
def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
# 如果resume_from_checkpoint设置了有效路径
if args.resume_from_checkpoint is not None:
load_path = os.path.join(args.resume_from_checkpoint, SCHEDULER_NAME)
# 如果该路径下有保存的调度器状态,则加载它
if os.path.exists(load_path):
#scheduler = kwargs['lr_scheduler']
scheduler = kwargs.get("lr_scheduler")
if scheduler is None:
return
scheduler_state = torch.load(load_path)
scheduler.load_state_dict(scheduler_state)
解决效果如下,我们可以看到,在chaeckpoint10重新开始训练的时候,学习率是接着之前的学习率开始的(5.5e-7),而不是从头开始(0.5e-7):
文章来源地址https://www.toymoban.com/news/detail-704636.html
到了这里,关于解决deepspeed框架的bug:不保存调度器状态,模型训练重启时学习率从头开始的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!