层次分析法(matlab实现)

这篇具有很好参考价值的文章主要介绍了层次分析法(matlab实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.层次分析法(AHP)

       在决策理论中,层次分析法是一种以数学心理学为基础,组织和分析复杂决策的结构化技术,它代表了一种量化决策标准权重的准确方法,通过成对比较,利用个别专家的经验来估计因素的相对大小

2.算法用途

       在很多情况下,我们对事物的评价,应该多维度的进行评价。多维度评价之后我们要如何把它们合并成一个指标用于比较事物的好坏?这时候需要对各个指标赋权,层次分析法就是用来赋权重的,这个方法个体主观性较强,在数据集比较小,实在不好比较的时候可以选择这种方法

3.算法简述

这个算法是一个多指标综合评价算法,这种算法一般会有两个用途:

  • 指标定权

我们可以在没有数据支撑的情况下可以根据每个人对重视程度不一样而给各个指标指定权重

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

  • 量化方案选择

      我们在旅游的时候,可能会面临去哪的难题,我们会假设有几套方案,例如:杭州、三亚、成都,而每个地方的都可以综合以上的4个因素,给这些方案计算出一个量化得分,然后我们就可以根据它们各自的得分得出我们心里的最优选择

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

 4.AHP层次分析过程

       在分析一个现象或者问题之前,首先将现象或问题根据它们的性质分解成有关因素,并根据它们之间的关系分类而形成一个多层次的结构模型,然后通过经验或者专家,来判断和衡量底层因素对高层因素的相对重要性,并根据重要性的程度得出权重排序,进而可以量化分析比较。

       层次分析法的核心是将影响因素层次化和数据化,它把一个抽象的现象或问题由难到易的予以分解,易于对复杂问题进行直观的判断并做出决策。层次分析法具有将复杂问题简单化且计算简单等优点,应用都十分广泛,诸如在人员素质评估、多方案比较、科学成果评比和工作成效评价等多领域多方面都有运用 

一般的层次分析法分为三层:

  • 目标层(分析目的)
  • 准则层(分析因素)
  • 方案层(分析种类)

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

 注意:一致性检验的含义用于确定构建构建的判断矩阵是否存在逻辑问题

      类似于A对于B是3,就说明A比B重要,A对于C是1/3,就说明C比A重要,那么如果B对于C是2的话,就说明B比C重要,但是根据上述的逻辑,这样就犯了逻辑性的错误,理应是C比B重要

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

 4.1 构建层次评价模型

我们应该在分析前先确认整个决策事件的目标层、准则层、方案层

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

4.2构造判断矩阵

构造判断矩阵就是通过各要素之间相互两两比较,并确定各准则层对目标的权重

标度 含义
1 表示两个元素相比,具有同样的重要性
3 表示两个元素相比,前者比后者稍重要
5 表示两个元素相比,前者比后者明显重要
7 表示两个元素相比,前者比后者极其重要
9 表示两个元素相比,前者比后者强烈重要
2,4,6,8 表示上述相邻判断的中间值
1~9的倒数 表示相应两因素交换次序比较的重要性

判断矩阵满足:

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

 我们可以对于准则A,可以构造一个:

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

我们就可以根据我们对这些因素的一个客观认识去得到这个完整的判断矩阵

4.3 层次单排序与一致性检验

4.3.1层次单排序

 所谓的层次排序法就是根据我们构成的判别矩阵,求解各个指标的权重

方法一:方根法

  1. 计算每行乘积得到m次方,得到一个m维向量
  2. 将向量标准即为权重向量,即得到权重 

方法二:和法

  1. 先将矩阵的每列进行标准化
  2. 将标准化后的各元素按行求和
  3. 将求和结果进行标准化

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

4.3.2 求解最大特征值与CI值

设 n 阶判断矩阵为 B,则可用以下方法求出其最大的特征根 :BW=λW,其中,W 是 B 的特征向量。 在层次分析法中, 我们用以下的一致性指标 CI 来检验判断的一致性指标 (Consistency Index):

         CI=0表示判断矩阵完全一致,CI越大,判断矩阵的不一致性程度越严重

当得出权重矩阵后,我们可以计算最大特征根,其公式为:

其中n为维度数,AW为判断矩阵标准化后的权重,然后按行的累加值

4.3.3 根据CI、RI值求解CR值,判断其一致性是否通过

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

   情况如下:

  • CR<0.1时,矩阵A的一致性程度被认为在容许的范围内
  • CR>=0.1时,我们应该考虑对矩阵A进行修正

4.3.4 层次总排序与一致性检验

计算某一层所有因素对于最高层(目标层)相对重要性的权值,称为层次总排序

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

案例分析:

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

层次分析法(matlab实现),Matlab,matlab,算法,开发语言

 matlab源码:文章来源地址https://www.toymoban.com/news/detail-704656.html

%层次分析法
%P是指标评分 B是判别矩阵
function level(P,A)
%求出判别矩阵的行列数
[n,~]=size(A);
%求出该矩阵的特征向量与特征值
[V,D]=eig(A)
tzz=max(max(D))%找出最大的特征值
c1=D(1,:)==tzz%找出最大的特征值的位置
tzx=V(:,c1)%最大特征值对应的特征向量
%赋权重
quan=zeros(n,1)
%得到权重向量
for i=1:n
    quan(i,1)=tzx(i,1)/sum(tzx);
end
Q=quan
%--------------------------------一致性检验---------------------------------
%计算一致性指标CI
CI=(tzz-n)/(n-1)
%平均随机一致性指标RI
RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
%判断是否通过一致性
CR=CI/RI(1,n)
if CR>=0.1
    fprintf('没有通过一致性\n');
else
    fprintf('通过一致性检验\n');
end
%显示出所有评分对象的评分值
score=P*Q;
for i=1:length(score)
    name=['object_score',num2str(i)];
    eval([name,'=score(i)'])
end





到了这里,关于层次分析法(matlab实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模之层次分析法(含MATLAB代码)

    层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是 一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次 分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 基本

    2024年02月01日
    浏览(59)
  • 清风学习笔记—层次分析法—matlab对判断矩阵的一致性检验

    在判断矩阵是否为正互反矩阵这块,我写了两种代码,改进前很麻烦且有错误,改进后简洁多了,改进前的代码还有错误,忽略了对角线的值必须都是1,只考虑了除开对角线的元素相乘为1。  下面是全部代码

    2024年02月06日
    浏览(49)
  • 【建模算法】层次分析法(Python实现)

    在很多情况下,我们对事物评价,应该要多维度评价。多维度评价之后我们要如何把它们合并成一个指标用于比较事物的好坏呢,这时候需要对各个指标赋权, 层次分析法就是用来赋权重的了。 这个方法主观性比较强,在数据集比较小,实在不好比较的时候可以用这个方法

    2024年01月22日
    浏览(44)
  • Matlab:如何利用层次分析法(升级版)计算具有多重指标的判断矩阵的一致性检验和权重

    02 论文提供的太阳镜的评价体系 03 建立目标层和准则层的判断矩阵 (论文提供) 04 首先需要对判断矩阵进行一致性检验 4.1 一致性检验的一般步骤 4.2 对应上方步骤的变量和代码 05 一致性检验通过之后开始计算权重 5.1 算术平均法计算权重-理论部分 5.2 算术平均法计算权重

    2024年02月03日
    浏览(73)
  • 主成分分析法(PCA)及MATLAB实现

    目录 1. 主成分分析概念:  2. 主成分分析法步骤: 第一步:对所有特征进行中心化:去均值 第二步:求协方差矩阵C 第三步:求协方差矩阵C的特征值​编辑和相对应的特征向量​编辑 第四步:将原始特征投影到选取的特征向量上,得到降维后的新K维特征  3. 主成分分析法

    2024年02月12日
    浏览(40)
  • 数学建模--层次分析法(AHP)的Python实现

    目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 算术平均法求得的权重为: [0.07243906 0.30125047 0.62631047] 几何平均法求得的权重为: [0.7374984  0.17727613 0.08522547] 特征值权重法法求得的权重为: [0.07239208 0.30116321 0.62644471]

    2024年02月10日
    浏览(44)
  • 评价模型(一) 层次分析法(AHP),熵权法,TOPSIS分析 及其对应 PYTHON 实现代码和例题解释

    数学建模系列文章: 以下是个人在准备数模国赛时候的一些模型算法和代码整理,有空会不断更新内容: 评价模型(一)层次分析法(AHP),熵权法,TOPSIS分析 及其对应 PYTHON 实现代码和例题解释 评价模型(二)主成分分析、因子分析、二者对比及其对应 PYTHON 实现代码和例

    2024年02月08日
    浏览(62)
  • 主成分分析法(PCA)解析与MATLAB实践

    PCA(Principal Components Analysis)即主成分分析,也称主分量分析或主成分回归分析法,是一种无监督的数据降维方法,在机器学习中常用于特征降维提取主要特征以减少计算量。PCA主要原理是将高维原数据通过一个转换矩阵,映射到另一组低维坐标系下,从而实现数据降维。举个简

    2023年04月08日
    浏览(43)
  • 层次分析法(AHP)

    目录 目录 1 算法讲解 1.1解决评价类问题的一般步骤: 1.2 如何确定权重   1.2.1 判断矩阵的bug 1.2.2 一致性检验 1.2.3 计算权重  1.3 层次分析法具体步骤 1.3.1 建立层次结构 1.3.2 构造判断矩阵  1.3.3 一致性检验,计算权重 1.4 层次分析法局限性 2 代码 3 模型拓展 3.1 多个准则层

    2024年02月04日
    浏览(53)
  • 层次分析法(参考:清风)

             层次分析法(The Analytic Hierarchy Process即 AHP)是由美国运筹学家、 匹兹堡大学教授T . L. Saaty于20世纪70年代创立的一种系统分析与决策的综合 评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解 决了定性问题定量化的处理过程。        A

    2024年02月06日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包