Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明

这篇具有很好参考价值的文章主要介绍了Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明

目录

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明

一、简单介绍

二、安装文件相关说明

三、界面的简单说明

四、prompt 的一些语法简单说明

1、Prompt :正向提示词 ,用文字描述在图像中出现的内容

2、Negative prompt:负面提示词,用文字描述不想在图像中出现的内容


一、简单介绍

Stable Diffusion是一个文本到图像的潜在扩散模型,由CompVis、Stability AI和LAION的研究人员和工程师创建。它使用来自LAION-5B数据库子集的512x512图像进行训练。使用这个模型,可以生成包括人脸在内的任何图像,因为有开源的预训练模型,所以我们也可以在自己的机器上运行它,如下图所示。

Stable Diffusion是一个AI 绘图软件 (开源模型),可本地部署,可切换多种模型,且新的模型和开源库每天都在更新发布,最重要的是免费,没有绘图次数限制。

Github 网址:GitHub - AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

二、安装文件相关说明

下面进行以下文件夹进行简单说明:

1)embeddings

2)extensions

3)models

4)outputs

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

1、embeddings

embeddings 放置训练的 embedding 模型,它可以在我们使用基础模型时,再添加此模型进行叠加效果。 网页界面 UI 对应位置如图

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

2、extensions

extensions 插件安装目录,在 WebUI 插件安装界面安装后,可以此文件夹中查看,并上传相应的插件模型(如 ControlNet 需要专门的模型)。 网页界面 UI 对应位置如图

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

3、models

models 模型文件夹,安装时会默认下载 v1-5-pruned-emaonly,我们从其它地方下载的模型可以拷贝到此文件夹,在需要使用某个模型时,可以进行切换, 网页界面 UI 对应位置如图

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

4、outputs

outputs 生成的图系统会输出到这个文件夹里,可进行查看及保存。 网页界面 UI 对应位置如图

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

三、界面的简单说明

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

1、txt2img: 文字生成图片

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

Sampling method:采样方法

● Euler a :富有创造力,不同步数可以生产出不同的图片。 超过 30~40 步基本就没什么增益了

● Euler:最常见的基础算法,最简单也最快

● DDIM:速度快,一般 20 步差不多

● LMS:eular 的延伸算法,相对更稳定一点,30 步就比较稳定

● PLMS:改进一点的 LMS

● DPM2:DDIM 的一种改进版,速度大约是 DDIM 的两倍

Sampling Steps:采样迭代步数

先随机出一个噪声图片,然后一步步调整图片,向提示词 Prompt 靠拢。其实就是告诉 Stable Diffusion,这样的步骤应该进行多少次,步骤越多,每一步移动也就越小越精确,同时也成比例地增加生成图像所需要的时间。大部分采样器超过 50 步后意义就不大了

Restore faces:优化面部,绘制面部图像特别注意。原理是调用一个神经网络模型对面部进行修复

Tiling:生成一个可以平铺的图像

Highres. fix:先生成低分辩率的图,接着添加细节之后再输出,可以把低分辨率的照片调整到高分辨率

Batch count、 Batch size: 都是生成几张图,前者计算时间长,后者需要显存大

Denoising strength:决定算法对图像内容的保留程度。因为加的噪声少,原图片部分多,加的噪声多,原图片部分少。在 0 处,什么都不会改变,而在 1 处,你会得到一个不相关的图像

CFG Scale:对描述参数的倾向程度(也就是生成图像与提示词的一致程度),越低的值产生越有创意的结果,如果太低,例如 1,那 Promp t就完全没用了。一般在 5~15 之间为好,7,9,12 是 3 个常见的设置值

Seed:种子数,只要种子数、参数、模型都一致,就能重新生成一样的图像,-1 的话是生成一个随机数

2、img2img: 图片生成图片

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

与 txt2img 类似,在文字提示词的基础上,增加了图片提示。

Denoising strength:与原图一致性的程度,一般大于 0.7 出来的都是新效果,小于 0.3 基本就会原图一致

3、Extras: “无损”放大图片,优化(清晰、扩展)图像

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

主要将图像进行优化,Resize 设置放大的倍率,GFPGAN visibility 主要对图像清晰度进行优化,CodeFormer visibility 对于老照片及人脸修复很有效,权重参数为 0 时效果最大,为 1 时效果最小,建议从 0.5 开始尝试。

Upscaler 放大算法,一般不清楚可不选,或者选 ESRGAN_4x

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

Batch from Directory 可以进行批量处理,在 Input directory 中输入需要批量处理图片的目录,在 Output directory 中输入保存结果目录。

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

Scale to 中,可自定义图片的尺寸

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

4、PNG info:从图片 exif 里获取图片的信息,如果是 Stable Diffusion 原始生成的 png 图片,图片的 exif 信息里会写入图片生成参数

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

5、Checkpoint Merger:合并不同的模型,生成新的模型

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

6、Train:训练 embedding 或者 hypernetwork

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

7、Settings:设置页面

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

8、Extensions:插件的安装和管理页面

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

installed 表示已经安装好的插件

Available 表示在线可用的插件,一般都是从这里安装。

点击 Load from(加载自): 加载出可用的插件,然后按 Ctrl + F,输入想要安装插件的名称,以此进行查找。

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

install from URL 表示可以根据网址进行制定安装,这里网址一般指的是github 仓库地址

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

Backup/Restore 用来备份和恢复制定配置的

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

四、prompt 的一些语法简单说明

Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明,Stable Diffuse,stable diffuse,文生图,AI,Prompt,UI 界面说明

1、Prompt :正向提示词 ,用文字描述在图像中出现的内容

正向提示词例子:

(masterpiece:1.331), best quality,illustration,(1girl),
(deep pink hair:1.331), (wavy hair:1.21),(disheveled hair:1.331), messy hair, long bangs, hairs between eyes,(white hair:1.331), multicolored hair,(white bloomers:1.46),(open clothes),
beautiful detailed eyes,purple|red eyes),expressionless,sitting,dark background, moonlight,flower_petals,city,full_moon, 

分隔:不同的关键词tag之间,需要使用英文逗号 , 分隔,逗号前后有空格或者换行不影响结果。例如:1girl,loli,long hair,low twintails(1 个女孩,loli,长发,低双马尾)

混合:WebUI 使用 | 分隔多个关键词,实现混合多个要素,注意混合是同等比例、同时混。例如:1girl,red|blue hair, long hair(1个女孩,红色与蓝色头发混合,长发)

增强/减弱:有两种写法。

● 第一种 (提示词:权重数值):数值从0.1~100,默认状态是 1,低于 1 就是减弱,大于 1 就是加强。例如:(loli:1.21),(one girl:1.21),(cat ears:1.1),(flower hairpin:0.9)

● 第二种 (((提示词))),每套一层()括号增强 1.1 倍,每套一层 [] 减弱 1.1 倍。也就是套两层是1.1*1.1=1.21 倍,套三层是 1.331 倍,套 4 层是 1.4641 倍。例如: ((loli)),((one girl)),(cat ears),[flower hairpin],这与第一种写法等价,所以还是建议使用第一种方式。

渐变:可简单的理解时为,先按某种关键词生成,然后再此基础上向某个方向变化。

[关键词1:关键词2:数字],数字大于 1 理解为第 X 步前为关键词 1,第 X 步后变成关键词 2,数字小于 1 理解为总步数的百分之 X 前为关键词 1,之后变成关键词 2。

例如:a girl with very long [white:yellow:16] hair 等价为开始 a girl with very long white hair

,16步之后 a girl with very long yellow hair

例如:a girl with very long [white:yellow:0.5] hair 等价为开始 a girl with very long white hair,50% 步之后 a girl with very long yellow hair

交替:轮流使用关键词,例如:[cow|horse] in a field,这就是个牛与马的混合物;[cow|horse|cat|dog] in a field 就是牛、马、猫、狗之间混合。

2、Negative prompt:负面提示词,用文字描述不想在图像中出现的内容

一些常见的负面提示词:

lowres,bad anatomy,bad hands,text,error,missing fingers,
extra digit,fewer digits,cropped,worst quality,
low quality,normal quality,jpeg artifacts,signature,
watermark,username,blurry,missing arms,long neck,
Humpbacked,missing limb,too many fingers,
mutated,poorly drawn,out of frame,bad hands,
owres,unclear eyes,poorly drawn,cloned face,bad face

prompt 提示词先介绍到这里,后面将会一篇单独文章进行说明文章来源地址https://www.toymoban.com/news/detail-705089.html

到了这里,关于Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SHELL脚本 遍历文件夹下所有文件以及子文件夹

    dir 要设置为局部变量 如果设置为全局变量 在func递归时传入的参数 会改变 dir的值,将导致之后的文件目录错误(为更改后的dir值) 当前目录情况: 执行完shell后: 附上代码: 如有不对,感谢指出。

    2024年02月12日
    浏览(53)
  • python读取文件夹下的文件以及子文件夹中文件

    os.listdir() 读取目标文件夹下的文件名和子文件夹名,不会递归读取子文件夹下 方法一: root, dirs, files = os.walk() 递归读取文件夹和 子文件夹下所有文件 。方法二:也可以用os.listdir(),判断是文件夹再os.listdir()自己写一个递归程序 示例

    2024年02月16日
    浏览(64)
  • java 在文件夹以及子文件夹中遍历获取指定文件的list

    1.  使用java 递归方法获取指定文件的list,相当于在一个文件夹以及子文件夹,搜索文件的功能。 直接上代码: 

    2024年02月13日
    浏览(59)
  • Python 文件和文件夹操作

    模式 操作 若文件不存在 是否覆盖 rb 二进制只读 报错 - r+ 可读可写 报错 是 w 只写 创建 是 wb 二进制只写 创建 是 w+ 可读可写 创建 是 a 只写 创建 否,追加写 a+ 可读可写 创建 否,追加写 open(\\\'path\\\', \\\'mode\\\') 打开一个文件如果需要指定路径,为防止路径中的 对 python 干扰, 最

    2024年02月09日
    浏览(51)
  • MFC的文件操作——获取指定文件夹下面所有文件路径和删除指定文件夹下面所有文件

    目录 1.获取指定文件夹下面所有文件路径  2.删除指定文件夹下面所有文件 3.MFC的CString 字符串操作 4.MFC的 Int类型 与 Htuple类型数据之间转换  5.上述提及的函数应用 6.MFC与Halcon联合编程,获取halcon异常 7.MFC获取指定路径下的文件夹路径           ①、文件夹路径获取方式 ②

    2024年02月16日
    浏览(110)
  • matlab删除文件及文件夹的操作

    1.删除文件 2. 删除文件夹 删除空文件夹 删除文件夹(无论是否为空) 3. 其他方法 调用doc命令

    2024年02月15日
    浏览(51)
  • Python经典基础习题(文件与文件夹操作)

    目录 1.从键盘输入一些字符,逐个把它们写到指定的文件,直到输入一个@为止。 示例1: 请输入文件名: out.txt 请输入字符串: Python is open.@ 执行代码后,out.txt文件中内容为: Python is open. 2.老王的血压有些高,医生让家属给老王测血压。老王的女儿记录了一段时间的血压测

    2024年02月08日
    浏览(40)
  • 解决非系统盘出现Program Files文件夹以及Program Files下的ModifiableWindowsApps文件夹无法删除的问题。

    起因   今天突然发现,D盘出现Program Files文件夹,且含有一个空文件夹ModifiableWindowsApps。一般方式无法删除,需要SYSTEM权限,由于文件名和系统盘的Program Files一致,且需要较高权限,因此没有第一时间通过修改权限进行删除。   查阅相关信息后,本人猜测:几天前使用

    2024年02月11日
    浏览(116)
  • vue前端传递文件夹以及其他参数到后台

    前端 1、前端通过FormData进行传递,代码如下 后端 2、后端通过如下方式进行接收和解析 注意:如果后端接收不到数据,或者前端没有执行请求方法,考虑可能是定义的函数名冲突导致,更改函数名重试即可 可能需要的方法

    2024年03月23日
    浏览(47)
  • uniapp 引入 uview 以及各文件夹用途 (1)

    现在uniapp教程太多了 就不从头开始讲了 这里推荐一篇质量高些的大佬 大家可以从零参考他  uniapp从入门到精通 然后我只是简单记录一下我当时学习uniapp的一些问题和经验(单纯没什么可写了,混时长) 这里是 uview的官网 uView 2.0 第一步:(先进入uview插件市场) uView2.0重磅发布,

    2024年01月22日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包